These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27726075)

  • 21. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.
    Liu B; Qu F; Chen W; Liang H; Wang T; Cheng X; Yu H; Li G; Van der Bruggen B
    Water Res; 2017 Nov; 125():72-80. PubMed ID: 28834768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative degradation of pentachlorophenol by permanganate for ISCO application.
    Matta R; Chiron S
    Environ Technol; 2018 Mar; 39(5):651-657. PubMed ID: 28317441
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.
    Guo X; Yang Z; Dong H; Guan X; Ren Q; Lv X; Jin X
    Water Res; 2016 Jan; 88():671-680. PubMed ID: 26575476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation?
    Lemaire J; Croze V; Maier J; Simonnot MO
    Chemosphere; 2011 Aug; 84(9):1181-7. PubMed ID: 21733544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activated carbon fiber for heterogeneous activation of persulfate: implication for the decolorization of azo dye.
    Chen J; Hong W; Huang T; Zhang L; Li W; Wang Y
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18564-74. PubMed ID: 27294702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of methyl orange dye wastewater by cooperative electrochemical oxidation in anodic-cathodic compartment.
    Pang L; Wang H; Bian ZY
    Water Sci Technol; 2013; 67(3):521-6. PubMed ID: 23202555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.
    Zhang J; Sun B; Huang Y; Guan X
    Chemosphere; 2015 Dec; 141():154-61. PubMed ID: 26196405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant.
    Liu R; Liu H; Zhao X; Qu J; Zhang R
    J Hazard Mater; 2010 Apr; 176(1-3):926-31. PubMed ID: 20031306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO(2) electrode.
    Zhou M; He J
    J Hazard Mater; 2008 May; 153(1-2):357-63. PubMed ID: 17904735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced removal of organics by permanganate preoxidation using tannic acid as a model compound--role of in situ formed manganese dioxide.
    Zhang L; Ma J; Li X; Wang S
    J Environ Sci (China); 2009; 21(7):872-6. PubMed ID: 19862950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoloration of orange G (OG) using electrochemical reduction.
    Khenifi A; Bouberka Z; Hamani H; Illikti H; Kameche M; Derriche Z
    Environ Technol; 2012; 33(7-9):1081-8. PubMed ID: 22720437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.
    Almeida LC; Silva BF; Zanoni MV
    Chemosphere; 2015 Oct; 136():63-71. PubMed ID: 25935699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.
    Kayan B; Gözmen B; Demirel M; Gizir AM
    J Hazard Mater; 2010 May; 177(1-3):95-102. PubMed ID: 20074850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.
    El-Desoky HS; Ghoneim MM; El-Sheikh R; Zidan NM
    J Hazard Mater; 2010 Mar; 175(1-3):858-65. PubMed ID: 19926217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study.
    Zhuang J; Wang S; Tan Y; Xiao R; Chen J; Wang X; Jiang L; Wang Z
    Sci Total Environ; 2019 Jun; 671():705-713. PubMed ID: 30939323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe
    Zhao J; Wang Q; Fu Y; Peng B; Zhou G
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22998-23008. PubMed ID: 29858998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of oxalate in permanganate oxidation of 4-chlorophenol.
    Shi Z; Zhang J; Zhu L
    Chemosphere; 2018 Jul; 203():117-122. PubMed ID: 29614404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.