These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 27726080)

  • 1. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils.
    Shi Y; Xie H; Cao L; Zhang R; Xu Z; Wang Z; Deng Z
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):417-426. PubMed ID: 27726080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake.
    Li X; Yan Z; Gu D; Li D; Tao Y; Zhang D; Su L; Ao Y
    J Basic Microbiol; 2019 Jun; 59(6):579-590. PubMed ID: 30980735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.
    Wang W; Deng Z; Tan H; Cao L
    Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).
    Cojocaru P; Gusiatin ZM; Cretescu I
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10693-10701. PubMed ID: 26884243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus.
    Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB
    Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus.
    He H; Ye Z; Yang D; Yan J; Xiao L; Zhong T; Yuan M; Cai X; Fang Z; Jing Y
    Chemosphere; 2013 Feb; 90(6):1960-5. PubMed ID: 23177711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The root-associated Fusarium isolated based on fungal community analysis improves phytoremediation efficiency of Ricinus communis L. in multi metal-contaminated soils.
    Yao H; Shi W; Wang X; Li J; Chen M; Li J; Chen D; Zhou L; Deng Z
    Chemosphere; 2023 May; 324():138377. PubMed ID: 36905995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape.
    Sheng XF; Xia JJ; Jiang CY; He LY; Qian M
    Environ Pollut; 2008 Dec; 156(3):1164-70. PubMed ID: 18490091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil.
    Chen ZJ; Sheng XF; He LY; Huang Z; Zhang WH
    J Hazard Mater; 2013 Jan; 244-245():709-17. PubMed ID: 23177252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn.
    Montalbán B; Thijs S; Lobo MC; Weyens N; Ameloot M; Vangronsveld J; Pérez-Sanz A
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28934107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of Cd, Pb, Zn, Mo, and S in juvenile and mature Brassica napus L. var. napus.
    Romih N; Grabner B; Lakota M; Ribaric-Lasnik C
    Int J Phytoremediation; 2012 Mar; 14(3):282-301. PubMed ID: 22567712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Citric acid assisted phytoremediation of cadmium by Brassica napus L.
    Ehsan S; Ali S; Noureen S; Mahmood K; Farid M; Ishaque W; Shakoor MB; Rizwan M
    Ecotoxicol Environ Saf; 2014 Aug; 106():164-72. PubMed ID: 24840879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth.
    Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J
    Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation.
    Shadmani L; Jamali S; Fatemi A
    Braz J Microbiol; 2021 Sep; 52(3):1097-1106. PubMed ID: 33871825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils.
    Deng Z; Zhang R; Shi Y; Hu L; Tan H; Cao L
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2346-2357. PubMed ID: 24062066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.
    Zhang YF; He LY; Chen ZJ; Wang QY; Qian M; Sheng XF
    Chemosphere; 2011 Mar; 83(1):57-62. PubMed ID: 21315404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.
    He LY; Chen ZJ; Ren GD; Zhang YF; Qian M; Sheng XF
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1343-8. PubMed ID: 19368973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance.
    Pan F; Meng Q; Luo S; Shen J; Chen B; Khan KY; Japenga J; Ma X; Yang X; Feng Y
    Int J Phytoremediation; 2017 Mar; 19(3):281-289. PubMed ID: 27593491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria.
    He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y
    Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.