These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27726326)

  • 1. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids.
    Lu HC; Kao SY; Yu HF; Chang TH; Kung CW; Ho KC
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30351-30361. PubMed ID: 27726326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation.
    Kao SY; Lu HC; Kung CW; Chen HW; Chang TH; Ho KC
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4175-84. PubMed ID: 26807824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids.
    Gélinas B; Das D; Rochefort D
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28726-28736. PubMed ID: 28731317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological Features of SiO
    Silori GK; Thoka S; Ho KC
    ACS Appl Mater Interfaces; 2023 May; 15(21):25791-25805. PubMed ID: 37205840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a Gel-Polymer Electrolyte-Based Electrochromic Device Outperforming Its Solution-Type Counterpart in All Merits: Architectural Benefits of CeO
    Silori GK; Thoka S; Ho KC
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4958-4974. PubMed ID: 38241089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Low Power Electrochromic Heat Shutters Through Tailoring Diffusion-Controlled Behaviors.
    In YR; Kim YM; Lee Y; Choi WY; Kim SH; Lee SW; Moon HC
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30635-30642. PubMed ID: 32519836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step achieving high performance all-solid-state and all-in-one flexible electrochromic supercapacitor by polymer dispersed electrochromic device strategy.
    Ling H; Zhang J; Wang Y; Zeng X
    J Colloid Interface Sci; 2024 Jul; 665():969-976. PubMed ID: 38569313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Healing Ionic Liquid-Based Ionically Cross-Linked Gel Polymer Electrolyte for Electrochromic Devices.
    Chen W; Liu S; Guo L; Zhang G; Zhang H; Cao M; Wu L; Xiang T; Peng Y
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33673624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices.
    Zhou D; Zhou R; Chen C; Yee WA; Kong J; Ding G; Lu X
    J Phys Chem B; 2013 Jun; 117(25):7783-9. PubMed ID: 23742675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochromism of Ferrocene- and Viologen-Based Redox-Active Ionic Liquids Composite.
    Tahara H; Uranaka K; Hirano M; Ikeda T; Sagara T; Murakami H
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1-6. PubMed ID: 30582681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first truly all-solid state organic electrochromic device based on polymeric ionic liquids.
    Shaplov AS; Ponkratov DO; Aubert PH; Lozinskaya EI; Plesse C; Vidal F; Vygodskii YS
    Chem Commun (Camb); 2014 Mar; 50(24):3191-3. PubMed ID: 24518924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Switching Properties and Ion Diffusion Behavior of Polytriphenylamine Derivative with Pendent Ionic Liquid Unit.
    Qian L; Lv X; Ouyang M; Tameev A; Katin K; Maslov M; Bi Q; Huang C; Zhu R; Zhang C
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32404-32412. PubMed ID: 30178666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All solid state electrochromic devices based on the LiF electrolyte.
    Chen X; Dou S; Li W; Liu D; Zhang Y; Zhao Y; Li Y; Zhao J; Zhang X
    Chem Commun (Camb); 2020 May; 56(37):5018-5021. PubMed ID: 32242572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ITO electrode on the electrochromic performance outcomes of viologen-functionalized polyhedral oligomeric silsesquioxanes.
    Pande GK; Sun F; Kim DY; Eom JH; Park JS
    RSC Adv; 2022 Apr; 12(20):12746-12752. PubMed ID: 35480344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance printed organic electrochromic devices based on an optimized UV curable solid-state electrolyte.
    Huang C; Hu Z; Yi YQ; Chen X; Wu X; Su W; Cui Z
    Nanoscale; 2022 Oct; 14(38):14122-14128. PubMed ID: 36102055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric molecular modification of viologens for highly stable electrochromic devices.
    Kim M; Kim YM; Moon HC
    RSC Adv; 2019 Dec; 10(1):394-401. PubMed ID: 35492563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ultrafast, Energy-Efficient Electrochromic and Thermochromic Device for Smart Windows.
    Deng B; Zhu Y; Wang X; Zhu J; Liu M; Liu M; He Y; Zhu C; Zhang C; Meng H
    Adv Mater; 2023 Sep; 35(35):e2302685. PubMed ID: 37358298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual electrochrome of poly-(3,4-ethylenedioxythiophene) doped by N,N'-bis(3-sulfonatopropyl)-4-4'-bipyridinium--redox chemistry and electrochromism in flexible devices.
    Bhandari S; Deepa M; Pahal S; Joshi AG; Srivastava AK; Kant R
    ChemSusChem; 2010; 3(1):97-105. PubMed ID: 19924765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments.
    Alesanco Y; Viñuales A; Rodriguez J; Tena-Zaera R
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29534466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printed Multicolor High-Contrast Electrochromic Devices.
    Chen BH; Kao SY; Hu CW; Higuchi M; Ho KC; Liao YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25069-76. PubMed ID: 26496422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.