BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27726386)

  • 1. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
    Oleinikovas V; Saladino G; Cossins BP; Gervasio FL
    J Am Chem Soc; 2016 Nov; 138(43):14257-14263. PubMed ID: 27726386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH.
    Comitani F; Gervasio FL
    J Chem Theory Comput; 2018 Jun; 14(6):3321-3331. PubMed ID: 29768914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites.
    Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A
    J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Based Analysis of Cryptic-Site Opening.
    Sun Z; Wakefield AE; Kolossvary I; Beglov D; Vajda S
    Structure; 2020 Feb; 28(2):223-235.e2. PubMed ID: 31810712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.
    Kimura SR; Hu HP; Ruvinsky AM; Sherman W; Favia AD
    J Chem Inf Model; 2017 Jun; 57(6):1388-1401. PubMed ID: 28537745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the structural origins of cryptic sites on proteins.
    Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SWISH-X, an Expanded Approach to Detect Cryptic Pockets in Proteins and at Protein-Protein Interfaces.
    Borsatto A; Gianquinto E; Rizzi V; Gervasio FL
    J Chem Theory Comput; 2024 Apr; 20(8):3335-3348. PubMed ID: 38563746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations.
    Kuzmanic A; Bowman GR; Juarez-Jimenez J; Michel J; Gervasio FL
    Acc Chem Res; 2020 Mar; 53(3):654-661. PubMed ID: 32134250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosolvent-Enhanced Sampling and Unbiased Identification of Cryptic Pockets Suitable for Structure-Based Drug Design.
    Schmidt D; Boehm M; McClendon CL; Torella R; Gohlke H
    J Chem Theory Comput; 2019 May; 15(5):3331-3343. PubMed ID: 30998331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptic Pockets Repository through Pocket Dynamics Tracking and Metadynamics on Essential Dynamics Space: Applications to Mcl-1.
    Benabderrahmane M; Bureau R; Voisin-Chiret AS; Santos JSO
    J Chem Inf Model; 2021 Nov; 61(11):5581-5588. PubMed ID: 34748701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Application of SiteMap and Site Finder for Focused Cryptic Pocket Identification.
    Ge Y; Pande V; Seierstad MJ; Damm-Ganamet KL
    J Phys Chem B; 2024 Jul; 128(26):6233-6245. PubMed ID: 38904218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics.
    Smith RD; Carlson HA
    J Chem Inf Model; 2021 Mar; 61(3):1287-1299. PubMed ID: 33599485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opening of a cryptic pocket in β-lactamase increases penicillinase activity.
    Knoverek CR; Mallimadugula UL; Singh S; Rennella E; Frederick TE; Yuwen T; Raavicharla S; Kay LE; Bowman GR
    Proc Natl Acad Sci U S A; 2021 Nov; 118(47):. PubMed ID: 34799442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery.
    Sabanés Zariquiey F; Jacoby E; Vos A; van Vlijmen HWT; Tresadern G; Harvey J
    J Chem Inf Model; 2022 Feb; 62(3):533-543. PubMed ID: 35041430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic binding sites on proteins: definition, detection, and druggability.
    Vajda S; Beglov D; Wakefield AE; Egbert M; Whitty A
    Curr Opin Chem Biol; 2018 Jun; 44():1-8. PubMed ID: 29800865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sampling techniques in molecular dynamics simulations of biological systems.
    Bernardi RC; Melo MCR; Schulten K
    Biochim Biophys Acta; 2015 May; 1850(5):872-877. PubMed ID: 25450171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Multiple atomistic force fields in a single enhanced sampling simulation.
    Hoang Viet M; Derreumaux P; Nguyen PH
    J Chem Phys; 2015 Jul; 143(2):021101. PubMed ID: 26178083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.