BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27726386)

  • 21. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Fluctuations of Aromatic Residues in an Apo-Form Reveal Cryptic Binding Sites: Implications for Fragment-Based Drug Design.
    Iida S; Nakamura HK; Mashimo T; Fukunishi Y
    J Phys Chem B; 2020 Nov; 124(45):9977-9986. PubMed ID: 33140952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Simulation Techniques as Tools in Drug Discovery and Pharmacology: A Focus on Allosteric Drugs.
    Platania CBM; Bucolo C
    Methods Mol Biol; 2021; 2253():245-254. PubMed ID: 33315227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins.
    Zuzic L; Marzinek JK; Warwicker J; Bond PJ
    J Chem Theory Comput; 2020 Sep; 16(9):5948-5959. PubMed ID: 32786908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators.
    Hart KM; Moeder KE; Ho CMW; Zimmerman MI; Frederick TE; Bowman GR
    PLoS One; 2017; 12(6):e0178678. PubMed ID: 28570708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites.
    Tze-Yang Ng J; Tan YS
    J Chem Theory Comput; 2022 Mar; 18(3):1969-1981. PubMed ID: 35175753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.
    Mori T; Miyashita N; Im W; Feig M; Sugita Y
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1635-51. PubMed ID: 26766517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating Cryptic Pocket Discovery Using AlphaFold.
    Meller A; Bhakat S; Solieva S; Bowman GR
    J Chem Theory Comput; 2023 Jul; 19(14):4355-4363. PubMed ID: 36948209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
    Mishra SK; Kara M; Zacharias M; Koca J
    Glycobiology; 2014 Jan; 24(1):70-84. PubMed ID: 24134878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Collective Variable for the Rapid Exploration of Protein Druggability.
    Cuchillo R; Pinto-Gil K; Michel J
    J Chem Theory Comput; 2015 Mar; 11(3):1292-307. PubMed ID: 26579775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping the binding sites of challenging drug targets.
    Wakefield AE; Kozakov D; Vajda S
    Curr Opin Struct Biol; 2022 Aug; 75():102396. PubMed ID: 35636004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins.
    Ostermeir K; Zacharias M
    Biochim Biophys Acta; 2013 May; 1834(5):847-53. PubMed ID: 23298543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociation aided and side chain sampling enhanced Hamiltonian replica exchange.
    Mu Y
    J Chem Phys; 2009 Apr; 130(16):164107. PubMed ID: 19405561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling.
    Mori T; Hamers RJ; Pedersen JA; Cui Q
    J Phys Chem B; 2014 Jul; 118(28):8210-20. PubMed ID: 24641518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Druggability of dynamic protein-protein interfaces.
    Ulucan O; Eyrisch S; Helms V
    Curr Pharm Des; 2012; 18(30):4599-606. PubMed ID: 22650258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting allosteric sites using fast conformational sampling as guided by coarse-grained normal modes.
    Zheng W
    J Chem Phys; 2023 Mar; 158(12):124127. PubMed ID: 37003737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets.
    Hou X; Sun JP; Ge L; Liang X; Li K; Zhang Y; Fang H
    Eur J Med Chem; 2020 Mar; 190():112131. PubMed ID: 32078861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.