BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 27726448)

  • 21. Rectal and Bladder Temperatures vs Forehead Core Temperatures Measured With SpotOn Monitoring System.
    Schell-Chaple HM; Liu KD; Matthay MA; Puntillo KA
    Am J Crit Care; 2018 Jan; 27(1):43-50. PubMed ID: 29292274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian rhythm changes in core temperature over the menstrual cycle: method for noninvasive monitoring.
    Coyne MD; Kesick CM; Doherty TJ; Kolka MA; Stephenson LA
    Am J Physiol Regul Integr Comp Physiol; 2000 Oct; 279(4):R1316-20. PubMed ID: 11003999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of thermoregulatory vasomotion and ambient temperature variation on the accuracy of core-temperature estimates by cutaneous liquid-crystal thermometers.
    Ikeda T; Sessler DI; Marder D; Xiong J
    Anesthesiology; 1997 Mar; 86(3):603-12. PubMed ID: 9066326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of newborn baby's temperature by human touch: a potentially useful primary care strategy.
    Singh M; Rao G; Malhotra AK; Deorari AK
    Indian Pediatr; 1992 Apr; 29(4):449-52. PubMed ID: 1506096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breast skin temperature rhythms in relation to ovulation.
    Wilson DW; Griffiths K; Halberg F; Simpson HW; Griffiths R; Kemp KW; Nix AB; Rowlands RJ
    Chronobiologia; 1983; 10(3):231-43. PubMed ID: 6641367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian rhythms in depression. Part I: Monitoring of the circadian body temperature rhythm.
    Tsujimoto T; Yamada N; Shimoda K; Hanada K; Takahashi S
    J Affect Disord; 1990 Mar; 18(3):193-7. PubMed ID: 2139064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.
    Brandes IF; Perl T; Bauer M; Bräuer A
    Biomed Tech (Berl); 2015 Feb; 60(1):1-9. PubMed ID: 25389979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of head-down bedrest on surface temperature distribution and non-evaporative heat dissipation].
    Qiu M; Wu JM; Gu DL; Yu XJ; Yuan XG; Chen JS
    Space Med Med Eng (Beijing); 2002 Apr; 15(2):93-7. PubMed ID: 12068890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zero-heat-flux core temperature monitoring system: an observational secondary analysis to evaluate agreement with naso-/oropharyngeal probe during anesthesia.
    West N; Cooke E; Morse D; Merchant RN; Görges M
    J Clin Monit Comput; 2020 Oct; 34(5):1121-1129. PubMed ID: 31696391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The validity of temperature-sensitive ingestible capsules for measuring core body temperature in laboratory protocols.
    Darwent D; Zhou X; van den Heuvel C; Sargent C; Roach GD
    Chronobiol Int; 2011 Oct; 28(8):719-26. PubMed ID: 21823816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of core body temperature cycles in long-term measurements under real life conditions in women.
    Ekhart D; Wicht H; Kersken T; Ackermann H; Kaczmarczyk M; Pretzsch G; Alexander H; Korf HW
    Chronobiol Int; 2018 Jan; 35(1):8-23. PubMed ID: 29106303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra-operative cutaneous temperature monitoring with zero-heat-flux technique (3M SpotOn) in comparison with oesophageal and arterial temperature: A prospective observational study.
    Boisson M; Alaux A; Kerforne T; Mimoz O; Debaene B; Dahyot-Fizelier C; Frasca D
    Eur J Anaesthesiol; 2018 Nov; 35(11):825-830. PubMed ID: 29708906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the Temple Touch Pro, a Novel Noninvasive Core-Temperature Monitoring System.
    Evron S; Weissman A; Toivis V; Shahaf DB; You J; Sessler DI; Ezri T
    Anesth Analg; 2017 Jul; 125(1):103-109. PubMed ID: 28617697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictability of individual circadian phase during daily routine for medical applications of circadian clocks.
    Komarzynski S; Bolborea M; Huang Q; Finkenstädt B; Lévi F
    JCI Insight; 2019 Sep; 4(18):. PubMed ID: 31430260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermography and thermoregulation of the face.
    Rustemeyer J; Radtke J; Bremerich A
    Head Face Med; 2007 Mar; 3():17. PubMed ID: 17362518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Ground-based studies on thermoregulation at simulated microgravity by head-down tilt bed rest].
    Yu XJ; Yang TD
    Space Med Med Eng (Beijing); 2000 Oct; 13(5):382-5. PubMed ID: 11894879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature Measurement Inside Protective Headgear: Comparison With Core Temperatures and Indicators of Physiological Strain During Exercise in a Hot Environment.
    Mitchell JB; Goldston KR; Adams AN; Crisp KM; Franklin BB; Kreutzer A; Montalvo DX; Turner MG; Phillips MD
    J Occup Environ Hyg; 2015; 12(12):866-74. PubMed ID: 26259634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy.
    Roche VP; Mohamad-Djafari A; Innominato PF; Karaboué A; Gorbach A; Lévi FA
    Chronobiol Int; 2014 Apr; 31(3):409-20. PubMed ID: 24397341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of an innovative method, based on tilt sensing, for the assessment of activity and body position.
    Bonmati-Carrion MA; Middleton B; Revell VL; Skene DJ; Rol MA; Madrid JA
    Chronobiol Int; 2015 Jun; 32(5):701-10. PubMed ID: 25839208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man.
    Gander PH; Connell LJ; Graeber RC
    J Biol Rhythms; 1986; 1(2):119-35. PubMed ID: 2979578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.