BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27726859)

  • 1. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.
    Wang M; Toda K; Maeda HA
    Phytochemistry; 2016 Dec; 132():16-25. PubMed ID: 27726859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in
    Wang M; Toda K; Block A; Maeda HA
    J Biol Chem; 2019 Mar; 294(10):3563-3576. PubMed ID: 30630953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine biosynthesis, metabolism, and catabolism in plants.
    Schenck CA; Maeda HA
    Phytochemistry; 2018 May; 149():82-102. PubMed ID: 29477627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine metabolism: identification of a key residue in the acquisition of prephenate aminotransferase activity by 1β aspartate aminotransferase.
    Giustini C; Graindorge M; Cobessi D; Crouzy S; Robin A; Curien G; Matringe M
    FEBS J; 2019 Jun; 286(11):2118-2134. PubMed ID: 30771275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis.
    Graindorge M; Giustini C; Jacomin AC; Kraut A; Curien G; Matringe M
    FEBS Lett; 2010 Oct; 584(20):4357-60. PubMed ID: 20883697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression Patterns and Functional Analysis of Three
    Dong S; Wang L; Qin H; Zhan H; Wang D; Cao X
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes.
    Schenck CA; Chen S; Siehl DL; Maeda HA
    Nat Chem Biol; 2015 Jan; 11(1):52-7. PubMed ID: 25402771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis.
    Rippert P; Puyaubert J; Grisollet D; Derrier L; Matringe M
    Plant Physiol; 2009 Mar; 149(3):1251-60. PubMed ID: 19136569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis.
    Riewe D; Koohi M; Lisec J; Pfeiffer M; Lippmann R; Schmeichel J; Willmitzer L; Altmann T
    Plant J; 2012 Sep; 71(5):850-9. PubMed ID: 22540282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana.
    Sandorf I; Holländer-Czytko H
    Planta; 2002 Nov; 216(1):173-9. PubMed ID: 12430028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine ammonia lyase from Arabidopsis thaliana (AtPAL2): A potent MIO-enzyme for the synthesis of non-canonical aromatic alpha-amino acids: Part I: Comparative characterization to the enzymes from Petroselinum crispum (PcPAL1) and Rhodosporidium toruloides (RtPAL).
    Dreßen A; Hilberath T; Mackfeld U; Billmeier A; Rudat J; Pohl M
    J Biotechnol; 2017 Sep; 258():148-157. PubMed ID: 28392421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.
    de la Torre F; Cañas RA; Pascual MB; Avila C; Cánovas FM
    J Exp Bot; 2014 Oct; 65(19):5527-34. PubMed ID: 24902885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.
    Garcia I; Rodgers M; Pepin R; Hsieh TF; Matringe M
    Plant Physiol; 1999 Apr; 119(4):1507-16. PubMed ID: 10198110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism.
    Lächler K; Imhof J; Reichelt M; Gershenzon J; Binder S
    Plant Mol Biol; 2015 May; 88(1-2):119-31. PubMed ID: 25851613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants.
    Qian Y; Lynch JH; Guo L; Rhodes D; Morgan JA; Dudareva N
    Nat Commun; 2019 Jan; 10(1):15. PubMed ID: 30604768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production.
    Zhang C; Cahoon RE; Hunter SC; Chen M; Han J; Cahoon EB
    Plant J; 2013 Feb; 73(4):628-39. PubMed ID: 23137278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-Hydroxyphenylpyruvate dioxygenase.
    Moran GR
    Arch Biochem Biophys; 2005 Jan; 433(1):117-28. PubMed ID: 15581571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for substrate recognition and inhibition of prephenate aminotransferase from Arabidopsis.
    Holland CK; Berkovich DA; Kohn ML; Maeda H; Jez JM
    Plant J; 2018 Apr; 94(2):304-314. PubMed ID: 29405514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
    Cho MH; Corea OR; Yang H; Bedgar DL; Laskar DD; Anterola AM; Moog-Anterola FA; Hood RL; Kohalmi SE; Bernards MA; Kang C; Davin LB; Lewis NG
    J Biol Chem; 2007 Oct; 282(42):30827-35. PubMed ID: 17726025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L.
    Ru M; Wang K; Bai Z; Peng L; He S; Wang Y; Liang Z
    Sci Rep; 2017 Jul; 7(1):4892. PubMed ID: 28687763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.