These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27726916)

  • 1. Waste or substrate for metal hyperaccumulating plants - The potential of phytomining on waste incineration bottom ash.
    Rosenkranz T; Kisser J; Wenzel WW; Puschenreiter M
    Sci Total Environ; 2017 Jan; 575():910-918. PubMed ID: 27726916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.
    Rosenkranz T; Kidd P; Puschenreiter M
    Waste Manag; 2018 Mar; 73():351-359. PubMed ID: 29273541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.
    Álvarez-López V; Prieto-Fernández Á; Cabello-Conejo MI; Kidd PS
    Sci Total Environ; 2016 Apr; 548-549():370-379. PubMed ID: 26803735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.
    Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T
    Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.
    Sormunen A; Teo K; Tapio S; Riina R
    Waste Manag Res; 2016 Jul; 34(7):595-604. PubMed ID: 27260785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the growth of Ni-hyperaccumulating plants in serpentine quarry tailings.
    Ghasemi Z; Ghaderian SM; Monterroso C; Kidd PS
    Int J Phytoremediation; 2018 Jun; 20(7):699-708. PubMed ID: 29723049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility.
    Valavanidis A; Iliopoulos N; Fiotakis K; Gotsis G
    Waste Manag Res; 2008 Jun; 26(3):247-55. PubMed ID: 18649572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N; Bäckström M
    J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.
    Xia Y; He P; Shao L; Zhang H
    J Environ Sci (China); 2017 Feb; 52():178-189. PubMed ID: 28254036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases.
    Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F
    J Hazard Mater; 2011 Mar; 187(1-3):534-43. PubMed ID: 21316147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.
    Saqib N; Bäckström M
    Waste Manag; 2014 Dec; 34(12):2505-19. PubMed ID: 25263218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection and combustion of Ni-hyperaccumulators for the phytomining process.
    Zhang X; Houzelot V; Bani A; Morel JL; Echevarria G; Simonnot MO
    Int J Phytoremediation; 2014; 16(7-12):1058-72. PubMed ID: 24933902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.
    Gupta AK; Sinha S
    J Hazard Mater; 2006 Aug; 136(2):371-8. PubMed ID: 16434138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.
    Tang J; Steenari BM
    Waste Manag; 2016 Feb; 48():315-322. PubMed ID: 26463013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.
    Takahashi F; Shimaoka T
    Waste Manag; 2012 Dec; 32(12):2294-305. PubMed ID: 22796015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.