These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27727394)
1. Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo. Berkowitz BA; Schmidt T; Podolsky RH; Roberts R Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5314-5319. PubMed ID: 27727394 [TBL] [Abstract][Full Text] [Related]
2. D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo. Berkowitz BA; Podolsky RH; Farrell B; Lee H; Trepanier C; Berri AM; Dernay K; Graffice E; Shafie-Khorassani F; Kern TS; Roberts R Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2999-3010. PubMed ID: 30025125 [TBL] [Abstract][Full Text] [Related]
3. Genetically heterogeneous mice show age-related vision deficits not related to increased rod cell L-type calcium channel function in vivo. Berkowitz BA; Miller RA; Roberts R Neurobiol Aging; 2017 Jan; 49():198-203. PubMed ID: 27823846 [TBL] [Abstract][Full Text] [Related]
4. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. Allen AE; Cameron MA; Brown TM; Vugler AA; Lucas RJ PLoS One; 2010 Nov; 5(11):e15063. PubMed ID: 21124780 [TBL] [Abstract][Full Text] [Related]
5. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI. Berkowitz BA; Roberts R; Bissig D Mol Vis; 2010 Aug; 16():1776-80. PubMed ID: 20808732 [TBL] [Abstract][Full Text] [Related]
6. Melanopsin in the human and chicken choroid. Platzl C; Kaser-Eichberger A; Trost A; Strohmaier C; Stone R; Nickla D; Schroedl F Exp Eye Res; 2024 Oct; 247():110053. PubMed ID: 39151779 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress and light-evoked responses of the posterior segment in a mouse model of diabetic retinopathy. Berkowitz BA; Grady EM; Khetarpal N; Patel A; Roberts R Invest Ophthalmol Vis Sci; 2015 Jan; 56(1):606-15. PubMed ID: 25574049 [TBL] [Abstract][Full Text] [Related]
9. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Cameron MA; Pozdeyev N; Vugler AA; Cooper H; Iuvone PM; Lucas RJ Eur J Neurosci; 2009 Feb; 29(4):761-7. PubMed ID: 19200071 [TBL] [Abstract][Full Text] [Related]
10. Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Doyle SE; Castrucci AM; McCall M; Provencio I; Menaker M Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10432-10437. PubMed ID: 16788070 [TBL] [Abstract][Full Text] [Related]
11. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit. Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556 [TBL] [Abstract][Full Text] [Related]
12. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo. Berkowitz BA; Gorgis J; Patel A; Baameur F; Gurevich VV; Craft CM; Kefalov VJ; Roberts R FASEB J; 2015 Feb; 29(2):554-64. PubMed ID: 25351983 [TBL] [Abstract][Full Text] [Related]
13. Confirming a prediction of the calcium hypothesis of photoreceptor aging in mice. Berkowitz BA; Grady EM; Roberts R Neurobiol Aging; 2014 Aug; 35(8):1883-91. PubMed ID: 24680323 [TBL] [Abstract][Full Text] [Related]
14. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Güler AD; Ecker JL; Lall GS; Haq S; Altimus CM; Liao HW; Barnard AR; Cahill H; Badea TC; Zhao H; Hankins MW; Berson DM; Lucas RJ; Yau KW; Hattar S Nature; 2008 May; 453(7191):102-5. PubMed ID: 18432195 [TBL] [Abstract][Full Text] [Related]
15. Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Peirson SN; Bovee-Geurts PH; Lupi D; Jeffery G; DeGrip WJ; Foster RG Brain Res Mol Brain Res; 2004 Apr; 123(1-2):132-5. PubMed ID: 15046875 [TBL] [Abstract][Full Text] [Related]
16. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. Tsai JW; Hannibal J; Hagiwara G; Colas D; Ruppert E; Ruby NF; Heller HC; Franken P; Bourgin P PLoS Biol; 2009 Jun; 7(6):e1000125. PubMed ID: 19513122 [TBL] [Abstract][Full Text] [Related]
17. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508 [TBL] [Abstract][Full Text] [Related]
18. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Buhr ED; Van Gelder RN Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8625-30. PubMed ID: 24843129 [TBL] [Abstract][Full Text] [Related]
19. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA Science; 2002 Dec; 298(5601):2213-6. PubMed ID: 12481141 [TBL] [Abstract][Full Text] [Related]
20. Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease. Feigl B; Dumpala S; Kerr GK; Zele AJ J Parkinsons Dis; 2020; 10(4):1467-1476. PubMed ID: 32986681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]