These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 27727485)
1. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234. Zamani M; diCenzo GC; Milunovic B; Finan TM Environ Microbiol; 2017 Jan; 19(1):218-236. PubMed ID: 27727485 [TBL] [Abstract][Full Text] [Related]
2. Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis. diCenzo GC; Zamani M; Ludwig HN; Finan TM Mol Plant Microbe Interact; 2017 Apr; 30(4):312-324. PubMed ID: 28398123 [TBL] [Abstract][Full Text] [Related]
3. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa). Mendis HC; Queiroux C; Brewer TE; Davis OM; Washburn BK; Jones KM Mol Plant Microbe Interact; 2013 Sep; 26(9):1089-105. PubMed ID: 23656330 [TBL] [Abstract][Full Text] [Related]
4. GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti-alfalfa symbiotic interaction. Collavino M; Riccillo PM; Grasso DH; Crespi M; Aguilar M Mol Plant Microbe Interact; 2005 Jul; 18(7):742-50. PubMed ID: 16042020 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the Sinorhizobium meliloti HslUV and ClpXP Protease Systems in Free-Living and Symbiotic States. Ogden AJ; McAleer JM; Kahn ML J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670545 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. Fumeaux C; Bakkou N; Kopcińska J; Golinowski W; Westenberg DJ; Müller P; Perret X Microbiology (Reading); 2011 Oct; 157(Pt 10):2745-2758. PubMed ID: 21719545 [TBL] [Abstract][Full Text] [Related]
7. Sinorhizobium meliloti Glutathione Reductase Is Required for both Redox Homeostasis and Symbiosis. Tang G; Li N; Liu Y; Yu L; Yan J; Luo L Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150514 [TBL] [Abstract][Full Text] [Related]
8. Coordinated Regulation of the Size and Number of Polyhydroxybutyrate Granules by Core and Accessory Phasins in the Facultative Microsymbiont Sinorhizobium fredii NGR234. Sun YW; Li Y; Hu Y; Chen WX; Tian CF Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375484 [TBL] [Abstract][Full Text] [Related]
9. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa. Yurgel SN; Kahn ML Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18958-63. PubMed ID: 19020095 [TBL] [Abstract][Full Text] [Related]
10. Sinorhizobium meliloti mutants deficient in phosphatidylserine decarboxylase accumulate phosphatidylserine and are strongly affected during symbiosis with alfalfa. Vences-Guzmán MA; Geiger O; Sohlenkamp C J Bacteriol; 2008 Oct; 190(20):6846-56. PubMed ID: 18708506 [TBL] [Abstract][Full Text] [Related]
11. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
12. A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa. Lipuma J; Cinege G; Bodogai M; Oláh B; Kiers A; Endre G; Dupont L; Dusha I Environ Microbiol; 2014 Dec; 16(12):3714-29. PubMed ID: 25156344 [TBL] [Abstract][Full Text] [Related]
13. NAD(P)+-malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities. Zhang Y; Aono T; Poole P; Finan TM Appl Environ Microbiol; 2012 Apr; 78(8):2803-12. PubMed ID: 22307295 [TBL] [Abstract][Full Text] [Related]
15. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants. Li YZ; Wang D; Feng XY; Jiao J; Chen WX; Tian CF Appl Environ Microbiol; 2016 Feb; 82(4):1305-15. PubMed ID: 26682851 [TBL] [Abstract][Full Text] [Related]
16. NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Driscoll BT; Finan TM Mol Microbiol; 1993 Mar; 7(6):865-73. PubMed ID: 8387144 [TBL] [Abstract][Full Text] [Related]
17. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
18. The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Arcondéguy T; Huez I; Tillard P; Gangneux C; de Billy F; Gojon A; Truchet G; Kahn D Genes Dev; 1997 May; 11(9):1194-206. PubMed ID: 9159400 [TBL] [Abstract][Full Text] [Related]
19. The NtrY/NtrX System of Sinorhizobium meliloti GR4 Regulates Motility, EPS I Production, and Nitrogen Metabolism but Is Dispensable for Symbiotic Nitrogen Fixation. Calatrava-Morales N; Nogales J; Ameztoy K; van Steenbergen B; Soto MJ Mol Plant Microbe Interact; 2017 Jul; 30(7):566-577. PubMed ID: 28398840 [TBL] [Abstract][Full Text] [Related]
20. Increase in alfalfa nodulation, nitrogen fixation, and plant growth by specific DNA amplification in Sinorhizobium meliloti. Castillo M; Flores M; Mavingui P; Martínez-Romero E; Palacios R; Hernández G Appl Environ Microbiol; 1999 Jun; 65(6):2716-22. PubMed ID: 10347066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]