These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400 [TBL] [Abstract][Full Text] [Related]
6. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer. Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344 [No Abstract] [Full Text] [Related]
7. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Beltran H; Rickman DS; Park K; Chae SS; Sboner A; MacDonald TY; Wang Y; Sheikh KL; Terry S; Tagawa ST; Dhir R; Nelson JB; de la Taille A; Allory Y; Gerstein MB; Perner S; Pienta KJ; Chinnaiyan AM; Wang Y; Collins CC; Gleave ME; Demichelis F; Nanus DM; Rubin MA Cancer Discov; 2011 Nov; 1(6):487-95. PubMed ID: 22389870 [TBL] [Abstract][Full Text] [Related]
8. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway. Yin Y; Xu L; Chang Y; Zeng T; Chen X; Wang A; Groth J; Foo WC; Liang C; Hu H; Huang J Mol Cancer; 2019 Jan; 18(1):11. PubMed ID: 30657058 [TBL] [Abstract][Full Text] [Related]
9. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Beltran H; Oromendia C; Danila DC; Montgomery B; Hoimes C; Szmulewitz RZ; Vaishampayan U; Armstrong AJ; Stein M; Pinski J; Mosquera JM; Sailer V; Bareja R; Romanel A; Gumpeni N; Sboner A; Dardenne E; Puca L; Prandi D; Rubin MA; Scher HI; Rickman DS; Demichelis F; Nanus DM; Ballman KV; Tagawa ST Clin Cancer Res; 2019 Jan; 25(1):43-51. PubMed ID: 30232224 [TBL] [Abstract][Full Text] [Related]
10. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. Lee JK; Phillips JW; Smith BA; Park JW; Stoyanova T; McCaffrey EF; Baertsch R; Sokolov A; Meyerowitz JG; Mathis C; Cheng D; Stuart JM; Shokat KM; Gustafson WC; Huang J; Witte ON Cancer Cell; 2016 Apr; 29(4):536-547. PubMed ID: 27050099 [TBL] [Abstract][Full Text] [Related]
11. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Venkadakrishnan VB; Presser AG; Singh R; Booker MA; Traphagen NA; Weng K; Voss NCE; Mahadevan NR; Mizuno K; Puca L; Idahor O; Ku SY; Bakht MK; Borah AA; Herbert ZT; Tolstorukov MY; Barbie DA; Rickman DS; Brown M; Beltran H Nat Commun; 2024 Aug; 15(1):6779. PubMed ID: 39117665 [TBL] [Abstract][Full Text] [Related]
12. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer. Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566 [TBL] [Abstract][Full Text] [Related]
13. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Mosquera JM; Beltran H; Park K; MacDonald TY; Robinson BD; Tagawa ST; Perner S; Bismar TA; Erbersdobler A; Dhir R; Nelson JB; Nanus DM; Rubin MA Neoplasia; 2013 Jan; 15(1):1-10. PubMed ID: 23358695 [TBL] [Abstract][Full Text] [Related]
14. Molecular events in neuroendocrine prostate cancer development. Wang Y; Wang Y; Ci X; Choi SYC; Crea F; Lin D; Wang Y Nat Rev Urol; 2021 Oct; 18(10):581-596. PubMed ID: 34290447 [TBL] [Abstract][Full Text] [Related]
15. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Luo J; Wang K; Yeh S; Sun Y; Liang L; Xiao Y; Xu W; Niu Y; Cheng L; Maity SN; Jiang R; Chang C Nat Commun; 2019 Jun; 10(1):2571. PubMed ID: 31189930 [TBL] [Abstract][Full Text] [Related]
16. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289 [TBL] [Abstract][Full Text] [Related]
17. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Xu P; Yang JC; Chen B; Ning S; Zhang X; Wang L; Nip C; Shen Y; Johnson OT; Grigorean G; Phinney B; Liu L; Wei Q; Corey E; Tepper CG; Chen HW; Evans CP; Dall'Era MA; Gao AC; Gestwicki JE; Liu C Nat Commun; 2024 Aug; 15(1):6626. PubMed ID: 39103353 [TBL] [Abstract][Full Text] [Related]
19. MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Liu L; Xu F; Chang CK; He Q; Wu LY; Zhang Z; Li X Cell Death Dis; 2017 Oct; 8(10):e3126. PubMed ID: 29022893 [TBL] [Abstract][Full Text] [Related]
20. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Brady NJ; Bagadion AM; Singh R; Conteduca V; Van Emmenis L; Arceci E; Pakula H; Carelli R; Khani F; Bakht M; Sigouros M; Bareja R; Sboner A; Elemento O; Tagawa S; Nanus DM; Loda M; Beltran H; Robinson B; Rickman DS Nat Commun; 2021 Jun; 12(1):3372. PubMed ID: 34099734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]