These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27728817)

  • 61. The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation.
    Gribar SC; Anand RJ; Sodhi CP; Hackam DJ
    J Leukoc Biol; 2008 Mar; 83(3):493-8. PubMed ID: 18160540
    [TBL] [Abstract][Full Text] [Related]  

  • 62. TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy.
    Hoebe K; Jiang Z; Georgel P; Tabeta K; Janssen E; Du X; Beutler B
    Curr Pharm Des; 2006; 12(32):4123-34. PubMed ID: 17100615
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics.
    Gao W; Xiong Y; Li Q; Yang H
    Front Physiol; 2017; 8():508. PubMed ID: 28769820
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Drug delivery using nanoparticle-stabilized nanocapsules.
    Yang XC; Samanta B; Agasti SS; Jeong Y; Zhu ZJ; Rana S; Miranda OR; Rotello VM
    Angew Chem Int Ed Engl; 2011 Jan; 50(2):477-81. PubMed ID: 21154794
    [No Abstract]   [Full Text] [Related]  

  • 65. Pairing Nanoparticles Geometry with TLR Agonists to Modulate Immune Responses for Vaccine Development.
    Bhoge PR; Mardhekar S; Toraskar S; Subramani B; Kikkeri R
    ACS Appl Bio Mater; 2022 Dec; 5(12):5675-5681. PubMed ID: 36375049
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Endosomal Organization of CpG Constructs Correlates with Enhanced Immune Activation.
    Lee K; Huang ZN; Mirkin CA; Odom TW
    Nano Lett; 2020 Aug; 20(8):6170-6175. PubMed ID: 32787186
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A general-purpose Nanohybrid fabricated by Polymeric Au(I)-peptide precursor to wake the function of Peptide Therapeutics.
    Yan J; Ji F; Yan S; You W; Ma F; Li F; Huang Y; Liu W; He W
    Theranostics; 2020; 10(19):8513-8527. PubMed ID: 32754260
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Theory of inflammation in light of new data: development of I.I Mechnikov ideas].
    Koval'chuk LV
    Zh Mikrobiol Epidemiol Immunobiol; 2008; (5):10-5. PubMed ID: 19004278
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of size and curvature on the enzyme activity of bionanoconjugates.
    Tadepalli S; Wang Z; Slocik J; Naik RR; Singamaneni S
    Nanoscale; 2017 Oct; 9(40):15666-15672. PubMed ID: 28993826
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections.
    Chowdhury R; Ilyas H; Ghosh A; Ali H; Ghorai A; Midya A; Jana NR; Das S; Bhunia A
    Nanoscale; 2017 Sep; 9(37):14074-14093. PubMed ID: 28901372
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanoparticle Ligand-Decoration Procedures Affect in Vivo Interactions with Immune Cells.
    Sofias AM; Andreassen T; Hak S
    Mol Pharm; 2018 Dec; 15(12):5754-5761. PubMed ID: 30376341
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cytosolic delivery of large proteins using nanoparticle-stabilized nanocapsules.
    Tang R; Jiang Z; Ray M; Hou S; Rotello VM
    Nanoscale; 2016 Oct; 8(42):18038-18041. PubMed ID: 27738697
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis.
    Palomino-Schätzlein M; García H; Gutiérrez-Carcedo P; Pineda-Lucena A; Herance JR
    PLoS One; 2017; 12(8):e0182985. PubMed ID: 28793337
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanoparticle-Decorated Biomimetic Extracellular Matrix for Cell Nanoencapsulation and Regulation.
    Lee K; Davis B; Wang X; Mirg S; Wen C; Abune L; Peterson BE; Han L; Chen H; Wang H; Szczesny SE; Lei Y; Kothapalli SR; Wang Y
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306583. PubMed ID: 37277318
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated
    Moyano DF; Liu Y; Ayaz F; Hou S; Puangploy P; Duncan B; Osborne BA; Rotello VM
    Chem; 2016; 1(2):320-327. PubMed ID: 28255579
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Overcoming Immune Dysregulation with Immunoengineered Nanobiomaterials.
    Scott EA; Karabin NB; Augsornworawat P
    Annu Rev Biomed Eng; 2017 Jun; 19():57-84. PubMed ID: 28226216
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of endosomal TLRs.
    Minton K
    Nat Rev Immunol; 2019 Nov; 19(11):660-661. PubMed ID: 31562494
    [No Abstract]   [Full Text] [Related]  

  • 78.
    Krause BM; Bauer B; Neudörfl JM; Wieder T; Schmalz HG
    RSC Med Chem; 2021 Dec; 12(12):2053-2059. PubMed ID: 35024614
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Inflammatory Consequences and Immune Modulation.
    Russell RS
    Viral Immunol; 2024 Apr; 37(3):125. PubMed ID: 38608265
    [No Abstract]   [Full Text] [Related]  

  • 80. Long-Term Evolution of
    Silva IN; Santos PM; Santos MR; Zlosnik JE; Speert DP; Buskirk SW; Bruger EL; Waters CM; Cooper VS; Moreira LM
    mSystems; 2016; 1(3):. PubMed ID: 27822534
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.