BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27728818)

  • 1. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS).
    Zhang X; Yang CW; Yu HQ; Sheng GP
    Water Res; 2016 Dec; 106():242-248. PubMed ID: 27728818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.
    Li SW; Zhang X; Sheng GP
    Environ Sci Pollut Res Int; 2016 May; 23(9):8627-33. PubMed ID: 26797954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.
    Kang F; Alvarez PJ; Zhu D
    Environ Sci Technol; 2014; 48(1):316-22. PubMed ID: 24328348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light.
    Xiong S; Cao X; Fang H; Guo H; Xing B
    Sci Total Environ; 2021 Jun; 775():145867. PubMed ID: 33621870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris.
    Zheng S; Zhou Q; Chen C; Yang F; Cai Z; Li D; Geng Q; Feng Y; Wang H
    Sci Total Environ; 2019 Apr; 660():1182-1190. PubMed ID: 30743913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mechanistic View of the Light-Induced Synthesis of Silver Nanoparticles Using Extracellular Polymeric Substances of
    Rahman A; Kumar S; Bafana A; Lin J; Dahoumane SA; Jeffryes C
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-defense mechanisms of microorganisms from the antimicrobial effect of silver nanoparticles: Highlight the role of extracellular polymeric substances.
    Yang Y; Chen X; Zhang N; Sun B; Wang K; Zhang Y; Zhu L
    Water Res; 2022 Jun; 218():118452. PubMed ID: 35447420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry.
    Battistel D; Baldi F; Gallo M; Faleri C; Daniele S
    Talanta; 2015 Jan; 132():294-300. PubMed ID: 25476311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent biomineralization of silver ions into Ag
    Khan S; Zada S; Ahmad S; Lv J; Fu P
    Chemosphere; 2019 Jan; 215():693-702. PubMed ID: 30347364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation.
    Zou X; Shi J; Zhang H
    J Hazard Mater; 2015 Jul; 292():61-9. PubMed ID: 25795274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS
    Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiolated-2-methacryloyloxyethyl phosphorylcholine protected silver nanoparticles as novel photo-induced cell-killing agents.
    Sangsuwan A; Kawasaki H; Iwasaki Y
    Colloids Surf B Biointerfaces; 2016 Apr; 140():128-134. PubMed ID: 26752209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.
    Akaighe N; Maccuspie RI; Navarro DA; Aga DS; Banerjee S; Sohn M; Sharma VK
    Environ Sci Technol; 2011 May; 45(9):3895-901. PubMed ID: 21456573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular Saccharide-Mediated Reduction of Au
    Kang F; Qu X; Alvarez PJ; Zhu D
    Environ Sci Technol; 2017 Mar; 51(5):2776-2785. PubMed ID: 28151654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors.
    Peng H; Guo H; Gao P; Zhou Y; Pan B; Xing B
    Sci Total Environ; 2021 Jul; 779():146326. PubMed ID: 33752010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.