BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27728822)

  • 1. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.
    Park JH; Han YS; Ahn JS
    Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox stability of As(III) on schwertmannite surfaces.
    Paikaray S; Essilfie-Dughan J; Göttlicher J; Pollok K; Peiffer S
    J Hazard Mater; 2014 Jan; 265():208-16. PubMed ID: 24361800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of arsenic from acidic liquors using chemical and autotrophic and mixed heterotrophic bacteria-produced biogenic schwertmannites.
    Nural Yaman B; Vatansever Ö; Demir EK; Aytar Çelik P; Puhakka JA; Sahinkaya E
    J Microbiol Methods; 2023 Aug; 211():106775. PubMed ID: 37385454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED; Johnston SG; Watling K; Bush RT; Keene AF; Sullivan LA
    Environ Sci Technol; 2010 Mar; 44(6):2016-21. PubMed ID: 20148551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
    Carlson L; Bigham JM; Schwertmann U; Kyek A; Wagner F
    Environ Sci Technol; 2002 Apr; 36(8):1712-9. PubMed ID: 11993868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar-templated surface precipitation and inner-sphere complexation effectively removes arsenic from acid mine drainage.
    Wang D; Root RA; Chorover J
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45519-45533. PubMed ID: 33866485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y; Gao M; Huang W; Wang T; Liu Y
    Chemosphere; 2020 Jul; 251():126427. PubMed ID: 32171940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.
    Park JH; Kim BS; Chon CM
    Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage.
    Kim HJ; Kim Y
    Chemosphere; 2021 Apr; 269():128720. PubMed ID: 33121807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-solution reactions in As(V) sorption by schwertmannite.
    Fukushi K; Sato T; Yanase N
    Environ Sci Technol; 2003 Aug; 37(16):3581-6. PubMed ID: 12953869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.
    Kumpulainen S; von der Kammer F; Hofmann T
    Water Res; 2008 Apr; 42(8-9):2051-60. PubMed ID: 18221768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenate and cadmium co-adsorption and co-precipitation on goethite.
    Jiang W; Lv J; Luo L; Yang K; Lin Y; Hu F; Zhang J; Zhang S
    J Hazard Mater; 2013 Nov; 262():55-63. PubMed ID: 24007999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads.
    Lee H; Kim D; Kim J; Ji MK; Han YS; Park YT; Yun HS; Choi J
    J Hazard Mater; 2015 Jul; 292():146-54. PubMed ID: 25804789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Formation and environmental implications of iron-enriched precipitates derived from natural neutralization of acid mine drainage].
    Zhou YF; Xie Y; Zhou LX
    Huan Jing Ke Xue; 2010 Jun; 31(6):1581-8. PubMed ID: 20698276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.
    Casiot C; Lebrun S; Morin G; Bruneel O; Personné JC; Elbaz-Poulichet F
    Sci Total Environ; 2005 Jul; 347(1-3):122-30. PubMed ID: 16084973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar.
    Wang Q; Wen J; Yang L; Cui H; Zeng T; Huang J
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):39154-39168. PubMed ID: 36595173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aluminum incorporation on the schwertmannite structure and surface properties.
    Carrero S; Fernandez-Martinez A; Pérez-López R; Cama J; Dejoie C; Nieto JM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1383-1391. PubMed ID: 35838030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y
    Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.