These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27728946)

  • 1. The LION Procedure to the Pelvic Nerves for Recovery of Locomotion in 18 Spinal Cord Injured Peoples - A Case Series.
    Possover M
    Surg Technol Int; 2016 Oct; 29():19-25. PubMed ID: 27728946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of sensory and supraspinal control of leg movement in people with chronic paraplegia: a case series.
    Possover M
    Arch Phys Med Rehabil; 2014 Apr; 95(4):610-4. PubMed ID: 24269993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training.
    Possover M; Forman A
    Spinal Cord Ser Cases; 2017; 3():16034. PubMed ID: 28503316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten-Year Experience With Continuous Low-Frequency Pelvic Somatic Nerves Stimulation for Recovery of Voluntary Walking in People With Chronic Spinal Cord Injury: A Prospective Case Series of 29 Consecutive Patients.
    Possover M
    Arch Phys Med Rehabil; 2021 Jan; 102(1):50-57. PubMed ID: 33065123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does low-frequency pelvic nerves stimulation in people with spinal cord injury allow for the formation of electrical pathways responsible for the recovery of walking functions?
    Possover M
    Med Hypotheses; 2021 Jan; 146():110376. PubMed ID: 33187803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "Possover-LION Procedure" to the Pelvic Somatic Nerves in People With a Spinal Cord Injury.
    Possover M
    J Minim Invasive Gynecol; 2022 Mar; 29(3):340. PubMed ID: 34896659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study.
    Harkema S; Gerasimenko Y; Hodes J; Burdick J; Angeli C; Chen Y; Ferreira C; Willhite A; Rejc E; Grossman RG; Edgerton VR
    Lancet; 2011 Jun; 377(9781):1938-47. PubMed ID: 21601270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation and motor recovery.
    Young W
    Cell Transplant; 2015; 24(3):429-46. PubMed ID: 25646771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of walking in patients with incomplete spinal cord injuries by use of surface electrical stimulation--preliminary results.
    Bajd T; Andrews BJ; Kralj A; Katakis J
    Prosthet Orthot Int; 1985 Aug; 9(2):109-11. PubMed ID: 4047919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the adaptability and recovery of locomotion after spinal cord injury.
    Barbeau H; Fung J; Leroux A; Ladouceur M
    Prog Brain Res; 2002; 137():9-25. PubMed ID: 12440356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of assisted overground stepping in a patient with chronic motor complete spinal cord injury: a case report.
    Murillo N; Kumru H; Opisso E; Padullés JM; Medina J; Vidal J; Kofler M
    NeuroRehabilitation; 2012; 31(4):401-7. PubMed ID: 23232164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected recovery after robotic locomotor training at physiologic stepping speed: a single-case design.
    Spiess MR; Jaramillo JP; Behrman AL; Teraoka JK; Patten C
    Arch Phys Med Rehabil; 2012 Aug; 93(8):1476-84. PubMed ID: 22446153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury.
    van den Brand R; Mignardot JB; von Zitzewitz J; Le Goff C; Fumeaux N; Wagner F; Capogrosso M; Martin Moraud E; Micera S; Schurch B; Curt A; Carda S; Bloch J; Courtine G
    Ann Phys Rehabil Med; 2015 Sep; 58(4):232-237. PubMed ID: 26100230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SENSORIMOTOR REGULATION OF MOVEMENTS: NOVEL STRATEGIES FOR THE RECOVERY OF MOBILITY.
    Gerasimenko Y; Kozlovskaya I; Edgerton VR
    Fiziol Cheloveka; 2016; 42(1):106-17. PubMed ID: 27188153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoring walking after spinal cord injury.
    Fouad K; Pearson K
    Prog Neurobiol; 2004 Jun; 73(2):107-26. PubMed ID: 15201036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.
    Harkema SJ
    Neuroscientist; 2001 Oct; 7(5):455-68. PubMed ID: 11597104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.
    Zhang SX; Huang F; Gates M; White J; Holmberg EG
    J Neurosci Methods; 2010 Mar; 187(2):183-9. PubMed ID: 20079372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of locomotor recovery following spinal cord injury.
    Barbeau H; Rossignol S
    Curr Opin Neurol; 1994 Dec; 7(6):517-24. PubMed ID: 7866583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humans at the dawn of the in-body electrical nerve stimulation era.
    Possover M
    Facts Views Vis Obgyn; 2022 Dec; 14(4):293-298. PubMed ID: 36724420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.