These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 27728970)
1. Characterization of the Key Aroma Compounds in Raw Licorice (Glycyrrhiza glabra L.) by Means of Molecular Sensory Science. Wagner J; Granvogl M; Schieberle P J Agric Food Chem; 2016 Nov; 64(44):8388-8396. PubMed ID: 27728970 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the Key Aroma Compounds in Heat-Processed Licorice (Succus Liquiritiae) by Means of Molecular Sensory Science. Wagner J; Schieberle P; Granvogl M J Agric Food Chem; 2017 Jan; 65(1):132-138. PubMed ID: 27992218 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of Thermally Induced Changes in Key Odorants of White Mustard Seeds (Sinapis alba L.) and Rapeseeds (Brassica napus L.) Using Molecular Sensory Science. Ortner E; Granvogl M; Schieberle P J Agric Food Chem; 2016 Nov; 64(43):8179-8190. PubMed ID: 27690424 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the key odorants in pan-fried white mushrooms (Agaricus bisporus L.) by means of molecular sensory science: comparison with the raw mushroom tissue. Grosshauser S; Schieberle P J Agric Food Chem; 2013 Apr; 61(16):3804-13. PubMed ID: 23581517 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the Key Aroma Compounds in Two Differently Dried Zhai X; Granvogl M J Agric Food Chem; 2019 Sep; 67(35):9885-9894. PubMed ID: 31090412 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the key odorants in raw Italian hazelnuts ( Corylus avellana L. var. Tonda Romana) and roasted hazelnut paste by means of molecular sensory science. Burdack-Freitag A; Schieberle P J Agric Food Chem; 2012 May; 60(20):5057-64. PubMed ID: 22515832 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Key Aroma Compounds in Pellets of Different Hop Varieties ( Brendel S; Hofmann T; Granvogl M J Agric Food Chem; 2019 Oct; 67(43):12044-12053. PubMed ID: 31518127 [TBL] [Abstract][Full Text] [Related]
8. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Li H; Qin D; Wu Z; Sun B; Sun X; Huang M; Sun J; Zheng F Food Chem; 2019 Jun; 284():100-107. PubMed ID: 30744833 [TBL] [Abstract][Full Text] [Related]
9. Key Odorants Forming Aroma of Polish Mead: Influence of the Raw Material and Manufacturing Processes. Cicha-Wojciechowicz D; Frank S; Steinhaus M; Majcher MA J Agric Food Chem; 2024 May; 72(18):10548-10557. PubMed ID: 38670543 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. Ruisinger B; Schieberle P J Agric Food Chem; 2012 May; 60(17):4186-94. PubMed ID: 22489542 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the Key Aroma Compounds in Two Commercial Dark Chocolates with High Cocoa Contents by Means of the Sensomics Approach. Seyfried C; Granvogl M J Agric Food Chem; 2019 May; 67(20):5827-5837. PubMed ID: 31066267 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the Key Aroma Compounds in Two Commercial Rums by Means of the Sensomics Approach. Franitza L; Granvogl M; Schieberle P J Agric Food Chem; 2016 Jan; 64(3):637-45. PubMed ID: 26715051 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests. Ma Y; Tang K; Xu Y; Li JM J Agric Food Chem; 2017 Jan; 65(2):394-401. PubMed ID: 28025882 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the Potent Odorants Contributing to the Characteristic Aroma of Beijing Douzhi by Gas Chromatography-Olfactometry, Quantitative Analysis, and Odor Activity Value. Huang J; Liu Y; Yang W; Liu Y; Zhang Y; Huang M; Sun B J Agric Food Chem; 2018 Jan; 66(3):689-694. PubMed ID: 29260548 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Key Aroma Compounds in Processed Prawns (Whiteleg Shrimp) by Quantitation and Aroma Recombination Experiments. Mall V; Schieberle P J Agric Food Chem; 2017 Apr; 65(13):2776-2783. PubMed ID: 28282986 [TBL] [Abstract][Full Text] [Related]
16. Characterization and comparison of key aroma compounds in raw and dry porcini mushroom (Boletus edulis) by aroma extract dilution analysis, quantitation and aroma recombination experiments. Zhang H; Pu D; Sun B; Ren F; Zhang Y; Chen H Food Chem; 2018 Aug; 258():260-268. PubMed ID: 29655732 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the key aroma compounds in apricots (Prunus armeniaca) by application of the molecular sensory science concept. Greger V; Schieberle P J Agric Food Chem; 2007 Jun; 55(13):5221-8. PubMed ID: 17530862 [TBL] [Abstract][Full Text] [Related]
18. Identification and Quantitation of Potent Odorants in Spearmint Oils. Kelley LE; Cadwallader KR J Agric Food Chem; 2018 Mar; 66(10):2414-2421. PubMed ID: 28058842 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Potent Aroma Compounds in Preserved Egg Yolk by Gas Chromatography-Olfactometry, Quantitative Measurements, and Odor Activity Value. Zhang Y; Liu Y; Yang W; Huang J; Liu Y; Huang M; Sun B; Li C J Agric Food Chem; 2018 Jun; 66(24):6132-6141. PubMed ID: 29790747 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the aroma signature of styrian pumpkin seed oil ( Cucurbita pepo subsp. pepo var. Styriaca) by molecular sensory science. Poehlmann S; Schieberle P J Agric Food Chem; 2013 Mar; 61(12):2933-42. PubMed ID: 23461409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]