BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27729060)

  • 1. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements.
    Pietzenuk B; Markus C; Gaubert H; Bagwan N; Merotto A; Bucher E; Pecinka A
    Genome Biol; 2016 Oct; 17(1):209. PubMed ID: 27729060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae.
    Ito H; Yoshida T; Tsukahara S; Kawabe A
    Gene; 2013 Apr; 518(2):256-61. PubMed ID: 23370337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to Activate Heat-Responsible Retrotransposon ONSEN in Brassicaceae Species.
    Ito H
    Methods Mol Biol; 2021; 2250():189-194. PubMed ID: 33900605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a heat-activated retrotransposon in natural accessions of Arabidopsis thaliana.
    Masuda S; Nozawa K; Matsunaga W; Masuta Y; Kawabe A; Kato A; Ito H
    Genes Genet Syst; 2017 May; 91(6):293-299. PubMed ID: 27980240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae.
    Zhang SJ; Liu L; Yang R; Wang X
    Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):321-332. PubMed ID: 33137519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana.
    Matsunaga W; Kobayashi A; Kato A; Ito H
    Plant Cell Physiol; 2012 May; 53(5):824-33. PubMed ID: 22173101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How a retrotransposon exploits the plant's heat stress response for its activation.
    Cavrak VV; Lettner N; Jamge S; Kosarewicz A; Bayer LM; Mittelsten Scheid O
    PLoS Genet; 2014 Jan; 10(1):e1004115. PubMed ID: 24497839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress.
    Ito H; Gaubert H; Bucher E; Mirouze M; Vaillant I; Paszkowski J
    Nature; 2011 Apr; 472(7341):115-9. PubMed ID: 21399627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species.
    Ma B; Kuang L; Xin Y; He N
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture.
    Masuta Y; Nozawa K; Takagi H; Yaegashi H; Tanaka K; Ito T; Saito H; Kobayashi H; Matsunaga W; Masuda S; Kato A; Ito H
    Plant Cell Physiol; 2017 Feb; 58(2):375-384. PubMed ID: 28013279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics.
    Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É
    BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic impact of stress-induced transposable element mobility in Arabidopsis.
    Roquis D; Robertson M; Yu L; Thieme M; Julkowska M; Bucher E
    Nucleic Acids Res; 2021 Oct; 49(18):10431-10447. PubMed ID: 34551439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of a transcriptionally active Ty1/copia-like retrotransposon in Gossypium.
    Cao Y; Jiang Y; Ding M; He S; Zhang H; Lin L; Rong J
    Plant Cell Rep; 2015 Jun; 34(6):1037-47. PubMed ID: 25693493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome.
    Terol J; Castillo MC; Bargues M; Pérez-Alonso M; de Frutos R
    Mol Biol Evol; 2001 May; 18(5):882-92. PubMed ID: 11319272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history.
    Rathore P; Geeta R; Das S
    Plant Sci; 2016 Jun; 247():35-48. PubMed ID: 27095398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana.
    Donoghue MT; Keshavaiah C; Swamidatta SH; Spillane C
    BMC Evol Biol; 2011 Feb; 11():47. PubMed ID: 21332978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DRD1, a SWI/SNF-like chromatin remodeling protein, regulates a heat-activated transposon in Arabidopsis thaliana.
    Takehira K; Hayashi Y; Nozawa K; Chen L; Suzuki T; Masuta Y; Kato A; Ito H
    Genes Genet Syst; 2021 Oct; 96(3):151-158. PubMed ID: 34373369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of zebularine on the heat-activated retrotransposon ONSEN in Arabidopsis thaliana and Vigna angularis.
    Boonjing P; Masuta Y; Nozawa K; Kato A; Ito H
    Genes Genet Syst; 2020 Oct; 95(4):165-172. PubMed ID: 32741853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.