BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27729198)

  • 1. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.
    Shen H; Zhu Y; Qin KR
    Med Eng Phys; 2016 Dec; 38(12):1439-1448. PubMed ID: 27729198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the flow dependency of the electrical conductivity of blood.
    Hoetink AE; Faes TJ; Visser KR; Heethaar RM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1251-61. PubMed ID: 15248541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery.
    Shen H; Li S; Wang Y; Qin KR
    Med Biol Eng Comput; 2019 Feb; 57(2):441-451. PubMed ID: 30182217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity.
    Pedrizzetti G; Domenichini F; Tortoriello A; Zovatto L
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):219-31. PubMed ID: 12186714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization analysis of pulsatile flow in elastic straight tubes.
    Matsumoto T; Naiki T; Hayashi K
    Biorheology; 1994; 31(4):365-81. PubMed ID: 7981436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new nonlinear two-dimensional model of blood motion in tapered and elastic vessels.
    Belardinelli E; Cavalcanti S
    Comput Biol Med; 1991; 21(1-2):1-13. PubMed ID: 2044356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic model of blood flow in major arteries pulsing in various modes.
    Belousov YM; Krainov VP; Revenko SV
    Med Biol Eng Comput; 2021 Sep; 59(9):1785-1794. PubMed ID: 34302595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation for the propagation of nonlinear pulsatile waves in arteries.
    Ma X; Lee GC; Wu SG
    J Biomech Eng; 1992 Nov; 114(4):490-6. PubMed ID: 1487901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering.
    Sharifzadeh B; Kalbasi R; Jahangiri M; Toghraie D; Karimipour A
    Comput Methods Programs Biomed; 2020 Aug; 192():105442. PubMed ID: 32192998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of sinusoidal flow in a straight elastic tube: effects of phase angles.
    Dutta A; Tarbell JM
    Biorheology; 1989; 26(1):1-22. PubMed ID: 2804271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrical analogue for a pressure-controlled, fluid flow generator for arterial blood-flow simulation.
    Janssens JL; Raman ER
    J Med Eng Technol; 1991; 15(1):21-5. PubMed ID: 2023232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of flow in an elastic artery model.
    Dutta A; Wang DM; Tarbell JM
    J Biomech Eng; 1992 Feb; 114(1):26-33. PubMed ID: 1491583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial distributions of temperature pressure and velocities for pulsatile blood flow in an axisymmetrical stiff tube.
    Yao L; Liao D; Zeng Y; Xu X; Xu H
    Physiol Meas; 2004 Dec; 25(6):1437-42. PubMed ID: 15712722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of oscillatory flow pressure gradient in an elastic artery model.
    Cohen MI; Wang DM; Tarbell JM
    Biorheology; 1995; 32(4):459-71. PubMed ID: 7579210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of noninvasive blood pressure measurement.
    Hayashi S; Hayase T; Shirai A; Maruyama M
    J Biomech Eng; 2006 Oct; 128(5):680-7. PubMed ID: 16995754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.