These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2772921)

  • 1. A rapid and sensitive micro-assay to determine the capacity of quinones to undergo redox cycling.
    Hart LA; van der Wal NA; Koster AS; Labadie RP
    Toxicol Lett; 1989 Aug; 48(2):151-7. PubMed ID: 2772921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    Cénas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Modification of redox properties of cells by ortho-benzoquinones].
    Speranskiĭ SD; Pogirnitskaia AV; Zorin VP; Cherenkevich SN; Speranskaia ECh
    Ukr Biokhim Zh (1978); 1990; 62(1):104-8. PubMed ID: 2336718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive activation of potential antitumor bis(aziridinyl)benzoquinones by xanthine oxidase: competition between oxygen reduction and quinone reduction.
    Lusthof KJ; Richter W; de Mol NJ; Janssen LH; Verboom W; Reinhoudt DN
    Arch Biochem Biophys; 1990 Feb; 277(1):137-42. PubMed ID: 2154955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimalarial quinones: redox potential dependence of methemoglobin formation and heme release in erythrocytes.
    Lopez-Shirley K; Zhang F; Gosser D; Scott M; Meshnick SR
    J Lab Clin Med; 1994 Jan; 123(1):126-30. PubMed ID: 8288952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid chromatography determination of an antineoplastic aziridinylbenzoquinone in human and murine serum.
    Allen BA; Newman RA; Griffin JP; McCormack JJ
    J Chromatogr; 1981 Jan; 222(1):146-51. PubMed ID: 7217323
    [No Abstract]   [Full Text] [Related]  

  • 7. [Polarographic analysis of cytostatic quinone derivatives. II. The redox system 2,5-bis-(ethyleneimine)-3,6-bis-(n-porpoxy)-benzoquinone-(1,4)].
    BERG H; KONIG KH
    Z Krebsforsch; 1958; 62(5):495-500. PubMed ID: 13625829
    [No Abstract]   [Full Text] [Related]  

  • 8. Microsomal superoxide anion production and NADPH-oxidation in a series of 22 aziridinylbenzoquinones.
    Prins B; Koster AS; Verboom W; Reinhoudt DN
    Biochem Pharmacol; 1989 Nov; 38(21):3753-7. PubMed ID: 2557029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sigmatropic reactions of the aziridinyl semiquinone species. Why aziridinyl benzoquinones are metabolically more stable than aziridinyl indoloquinones.
    Xing C; Skibo EB
    Biochemistry; 2000 Sep; 39(35):10770-80. PubMed ID: 10978162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of hepatocyte protein kinase C by redox-cycling quinones.
    Kass GE; Duddy SK; Orrenius S
    Biochem J; 1989 Jun; 260(2):499-507. PubMed ID: 2764885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry and DNA alkylation reactions of aziridinyl quinones: development of an efficient alkylating agent of the phosphate backbone.
    Skibo EB; Xing C
    Biochemistry; 1998 Oct; 37(43):15199-213. PubMed ID: 9790684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative metabolism of quinones to semiquinone radicals in xanthine oxidase system.
    Lewis DC; Shibamoto T
    J Appl Toxicol; 1989 Oct; 9(5):291-5. PubMed ID: 2556468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of quinone derived protein adducts and their selective identification using redox cycling based chemiluminescence assay.
    Elgawish MS; Kishikawa N; Ohyama K; Kuroda N
    J Chromatogr A; 2015 Jul; 1403():96-103. PubMed ID: 26044383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifications of cardiac contractility by redox cycling alkylating and mixed redox cycling/alkylating quinones.
    Floreani M; Carpenedo F
    J Pharmacol Exp Ther; 1991 Jan; 256(1):243-8. PubMed ID: 1846415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones.
    Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K
    Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread ability of fungi to drive quinone redox cycling for biodegradation.
    Krueger MC; Bergmann M; Schlosser D
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity of RH1 and related aziridinylbenzoquinones: involvement of activation by NAD(P)H:quinone oxidoreductase (NQO1) and oxidative stress.
    Nemeikaite-Ceniene A; Sarlauskas J; Anusevicius Z; Nivinskas H; Cenas N
    Arch Biochem Biophys; 2003 Aug; 416(1):110-8. PubMed ID: 12859987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationships for DT-diaphorase reduction of hypoxic cell directed agents: indoloquinones and diaziridinyl benzoquinones.
    Bailey SM; Suggett N; Walton MI; Workman P
    Int J Radiat Oncol Biol Phys; 1992; 22(4):649-53. PubMed ID: 1544832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-electron reduction of quinone and nitroaromatic xenobiotics by recombinant rat neuronal nitric oxide synthase.
    Anusevičius Ž; Nivinskas H; Šarlauskas J; Sari MA; Boucher JL; Čėnas N
    Acta Biochim Pol; 2013; 60(2):217-22. PubMed ID: 23748219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 3-amino-1,2,4-triazole on catalase and formation of methemoglobin from oxyhemoglobin in erythrocyte by superoxide radicals.
    Miura T; Ogiso T
    Chem Pharm Bull (Tokyo); 1978 Nov; 26(11):3540-5. PubMed ID: 215336
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.