These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27729536)

  • 1. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors.
    Hillmann D; Spahr H; Pfäffle C; Sudkamp H; Franke G; Hüttmann G
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13138-13143. PubMed ID: 27729536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics.
    Zhang F; Kurokawa K; Lassoued A; Crowell JA; Miller DT
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7951-7956. PubMed ID: 30944223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology.
    Sajdak BS; Salmon AE; Cava JA; Allen KP; Freling S; Ramamirtham R; Norton TT; Roorda A; Carroll J
    Exp Eye Res; 2019 Aug; 185():107683. PubMed ID: 31158381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional optical coherence tomography enables in vivo physiological assessment of retinal rod and cone photoreceptors.
    Zhang Q; Lu R; Wang B; Messinger JD; Curcio CA; Yao X
    Sci Rep; 2015 Apr; 5():9595. PubMed ID: 25901915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography.
    Moayed AA; Hariri S; Choh V; Bizheva K
    Opt Lett; 2011 Dec; 36(23):4575-7. PubMed ID: 22139247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging outer segment renewal in living human cone photoreceptors.
    Jonnal RS; Besecker JR; Derby JC; Kocaoglu OP; Cense B; Gao W; Wang Q; Miller DT
    Opt Express; 2010 Mar; 18(5):5257-70. PubMed ID: 20389538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina.
    Liu Z; Kurokawa K; Zhang F; Lee JJ; Miller DT
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12803-12808. PubMed ID: 29138314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-Resolved Physiological Response of Retina to Transcorneal Electrical Stimulation Measured With Optical Coherence Tomography.
    Sun P; Li Q; Li H; Di L; Su X; Chen J; Zheng H; Chen Y; Zhou C; Chai X
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):905-915. PubMed ID: 31021770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optoretinogram reveals the primary steps of phototransduction in the living human eye.
    Pandiyan VP; Maloney-Bertelli A; Kuchenbecker JA; Boyle KC; Ling T; Chen ZC; Park BH; Roorda A; Palanker D; Sabesan R
    Sci Adv; 2020 Sep; 6(37):. PubMed ID: 32917686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-induced changes of reflectivity detected by optical coherence tomography in macaque retina.
    Suzuki W; Tsunoda K; Hanazono G; Tanifuji M
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6345-54. PubMed ID: 23982841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors.
    Ma G; Son T; Kim TH; Yao X
    J Biophotonics; 2021 May; 14(5):e202000462. PubMed ID: 33547871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of intrinsic optical signals in the outer human retina using optical coherence tomography.
    Messner A; Aranha Dos Santos V; Stegmann H; Puchner S; Schmidl D; Leitgeb R; Schmetterer L; Werkmeister RM
    Ann N Y Acad Sci; 2022 Apr; 1510(1):145-157. PubMed ID: 34893981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT.
    Srinivasan VJ; Chen Y; Duker JS; Fujimoto JG
    Opt Express; 2009 Mar; 17(5):3861-77. PubMed ID: 19259228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the perceptual grain of the human retina.
    Harmening WM; Tuten WS; Roorda A; Sincich LC
    J Neurosci; 2014 Apr; 34(16):5667-77. PubMed ID: 24741057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Negative Cone Mosaic: A New Manifestation of the Optical Stiles-Crawford Effect in Normal Eyes.
    Miloudi C; Rossant F; Bloch I; Chaumette C; Leseigneur A; Sahel JA; Meimon S; Mrejen S; Paques M
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7043-50. PubMed ID: 26523388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable optical activation of human cone photoreceptors visualized using a short coherence light source.
    Rha J; Schroeder B; Godara P; Carroll J
    Opt Lett; 2009 Dec; 34(24):3782-4. PubMed ID: 20016612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors.
    Yao X; Kim TH
    Exp Biol Med (Maywood); 2020 Jul; 245(13):1087-1095. PubMed ID: 32558598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution retinal imaging of cone-rod dystrophy.
    Wolfing JI; Chung M; Carroll J; Roorda A; Williams DR
    Ophthalmology; 2006 Jun; 113(6):1019.e1. PubMed ID: 16650474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas.
    Wang B; Lu Y; Yao X
    J Biomed Opt; 2016 Sep; 21(9):96010. PubMed ID: 27653936
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.