These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27729844)

  • 1. Automatic Speech Recognition from Neural Signals: A Focused Review.
    Herff C; Schultz T
    Front Neurosci; 2016; 10():429. PubMed ID: 27729844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
    Rabbani Q; Milsap G; Crone NE
    Neurotherapeutics; 2019 Jan; 16(1):144-165. PubMed ID: 30617653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-to-text: decoding spoken phrases from phone representations in the brain.
    Herff C; Heger D; de Pesters A; Telaar D; Brunner P; Schalk G; Schultz T
    Front Neurosci; 2015; 9():217. PubMed ID: 26124702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating Natural, Intelligible Speech From Brain Activity in Motor, Premotor, and Inferior Frontal Cortices.
    Herff C; Diener L; Angrick M; Mugler E; Tate MC; Goldrick MA; Krusienski DJ; Slutzky MW; Schultz T
    Front Neurosci; 2019; 13():1267. PubMed ID: 31824257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS.
    Angrick M; Luo S; Rabbani Q; Candrea DN; Shah S; Milsap GW; Anderson WS; Gordon CR; Rosenblatt KR; Clawson L; Tippett DC; Maragakis N; Tenore FV; Fifer MS; Hermansky H; Ramsey NF; Crone NE
    Sci Rep; 2024 Apr; 14(1):9617. PubMed ID: 38671062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speaking mode recognition from functional Near Infrared Spectroscopy.
    Herff C; Putze F; Heger D; Guan C; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1715-8. PubMed ID: 23366240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders.
    Kitzing P; Maier A; Ahlander VL
    Logoped Phoniatr Vocol; 2009; 34(2):91-6. PubMed ID: 19173117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keyword Spotting Using Human Electrocorticographic Recordings.
    Milsap G; Collard M; Coogan C; Rabbani Q; Wang Y; Crone NE
    Front Neurosci; 2019; 13():60. PubMed ID: 30837823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech synthesis from ECoG using densely connected 3D convolutional neural networks.
    Angrick M; Herff C; Mugler E; Tate MC; Slutzky MW; Krusienski DJ; Schultz T
    J Neural Eng; 2019 Jun; 16(3):036019. PubMed ID: 30831567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution neural recordings improve the accuracy of speech decoding.
    Duraivel S; Rahimpour S; Chiang CH; Trumpis M; Wang C; Barth K; Harward SC; Lad SP; Friedman AH; Southwell DG; Sinha SR; Viventi J; Cogan GB
    Nat Commun; 2023 Nov; 14(1):6938. PubMed ID: 37932250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-Learning Methods for Speech and Handwriting Detection Using Neural Signals: A Review.
    Sen O; Sheehan AM; Raman PR; Khara KS; Khalifa A; Chatterjee B
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech Synthesis from Stereotactic EEG using an Electrode Shaft Dependent Multi-Input Convolutional Neural Network Approach.
    Angrick M; Ottenhoff M; Goulis S; Colon AJ; Wagner L; Krusienski DJ; Kubben PL; Schultz T; Herff C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6045-6048. PubMed ID: 34892495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity.
    Angrick M; Ottenhoff MC; Diener L; Ivucic D; Ivucic G; Goulis S; Saal J; Colon AJ; Wagner L; Krusienski DJ; Kubben PL; Schultz T; Herff C
    Commun Biol; 2021 Sep; 4(1):1055. PubMed ID: 34556793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals.
    Dash D; Ferrari P; Dutta S; Wang J
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of words from brain-generated signals of speech-impaired people: Application of autoencoders as a neural Turing machine controller in deep neural networks.
    Boloukian B; Safi-Esfahani F
    Neural Netw; 2020 Jan; 121():186-207. PubMed ID: 31568896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A State-of-the-Art Review of EEG-Based Imagined Speech Decoding.
    Lopez-Bernal D; Balderas D; Ponce P; Molina A
    Front Hum Neurosci; 2022; 16():867281. PubMed ID: 35558735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalizing neural signal-to-text brain-computer interfaces.
    Sheth J; Tankus A; Tran M; Pouratian N; Fried I; Speier W
    Biomed Phys Eng Express; 2021 Apr; 7(3):. PubMed ID: 33836507
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.
    Wijayasiri P; Hartley DEH; Wiggins IM
    Hear Res; 2017 Aug; 351():55-67. PubMed ID: 28571617
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.