These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27729846)
1. Classification and Extraction of Resting State Networks Using Healthy and Epilepsy fMRI Data. Vergun S; Gaggl W; Nair VA; Suhonen JI; Birn RM; Ahmed AS; Meyerand ME; Reuss J; DeYoe EA; Prabhakaran V Front Neurosci; 2016; 10():440. PubMed ID: 27729846 [TBL] [Abstract][Full Text] [Related]
2. Presurgical localization and spatial shift of resting state networks in patients with brain metastases. Ding JR; Zhu F; Hua B; Xiong X; Wen Y; Ding Z; Thompson PM Brain Imaging Behav; 2019 Apr; 13(2):408-420. PubMed ID: 29611075 [TBL] [Abstract][Full Text] [Related]
3. Automatic selection of resting-state networks with functional magnetic resonance imaging. Storti SF; Formaggio E; Nordio R; Manganotti P; Fiaschi A; Bertoldo A; Toffolo GM Front Neurosci; 2013; 7():72. PubMed ID: 23730268 [TBL] [Abstract][Full Text] [Related]
4. 3D-Deep Learning Based Automatic Diagnosis of Alzheimer's Disease with Joint MMSE Prediction Using Resting-State fMRI. Duc NT; Ryu S; Qureshi MNI; Choi M; Lee KH; Lee B Neuroinformatics; 2020 Jan; 18(1):71-86. PubMed ID: 31093956 [TBL] [Abstract][Full Text] [Related]
5. Machine learning may predict individual hand motor activation from resting-state fMRI in patients with brain tumors in perirolandic cortex. Niu C; Wang Y; Cohen AD; Liu X; Li H; Lin P; Chen Z; Min Z; Li W; Ling X; Wen X; Wang M; Thompson HP; Zhang M Eur Radiol; 2021 Jul; 31(7):5253-5262. PubMed ID: 33758954 [TBL] [Abstract][Full Text] [Related]
6. An analytical workflow for seed-based correlation and independent component analysis in interventional resting-state fMRI studies. Seewoo BJ; Joos AC; Feindel KW Neurosci Res; 2021 Apr; 165():26-37. PubMed ID: 32464181 [TBL] [Abstract][Full Text] [Related]
7. Modeling motor task activation from resting-state fMRI using machine learning in individual subjects. Niu C; Cohen AD; Wen X; Chen Z; Lin P; Liu X; Menze BH; Wiestler B; Wang Y; Zhang M Brain Imaging Behav; 2021 Feb; 15(1):122-132. PubMed ID: 31903530 [TBL] [Abstract][Full Text] [Related]
8. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Demertzi A; Gómez F; Crone JS; Vanhaudenhuyse A; Tshibanda L; Noirhomme Q; Thonnard M; Charland-Verville V; Kirsch M; Laureys S; Soddu A Cortex; 2014 Mar; 52():35-46. PubMed ID: 24480455 [TBL] [Abstract][Full Text] [Related]
9. Spatial vs. Temporal Features in ICA of Resting-State fMRI - A Quantitative and Qualitative Investigation in the Context of Response Inhibition. Tian L; Kong Y; Ren J; Varoquaux G; Zang Y; Smith SM PLoS One; 2013; 8(6):e66572. PubMed ID: 23825545 [TBL] [Abstract][Full Text] [Related]
10. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946 [TBL] [Abstract][Full Text] [Related]
11. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study. Bhat DI; Indira Devi B; Bharti K; Panda R Neurosurg Focus; 2017 Mar; 42(3):E14. PubMed ID: 28245732 [TBL] [Abstract][Full Text] [Related]
12. Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment. Bi XA; Sun Q; Zhao J; Xu Q; Wang L Front Neurosci; 2018; 12():413. PubMed ID: 29970984 [TBL] [Abstract][Full Text] [Related]
13. Concordance of the Resting State Networks in Typically Developing, 6-to 7-Year-Old Children and Healthy Adults. Thornburgh CL; Narayana S; Rezaie R; Bydlinski BN; Tylavsky FA; Papanicolaou AC; Choudhri AF; Völgyi E Front Hum Neurosci; 2017; 11():199. PubMed ID: 28487641 [TBL] [Abstract][Full Text] [Related]
15. Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network. Chou Y; Chang C; Remedios SW; Butman JA; Chan L; Pham DL Front Neurosci; 2022; 16():768634. PubMed ID: 35368292 [TBL] [Abstract][Full Text] [Related]
16. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis. Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346 [TBL] [Abstract][Full Text] [Related]
17. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study. Jiang LW; Qian RB; Fu XM; Zhang D; Peng N; Niu CS; Wang YH Epilepsy Behav; 2018 Nov; 88():81-86. PubMed ID: 30243110 [TBL] [Abstract][Full Text] [Related]
18. Time course based artifact identification for independent components of resting-state FMRI. Rummel C; Verma RK; Schöpf V; Abela E; Hauf M; Berruecos JF; Wiest R Front Hum Neurosci; 2013; 7():214. PubMed ID: 23734119 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of Resting-State Functional Connectivity in Intractable Unilateral Temporal Lobe Epilepsy Patients with Impaired Executive Control Function. Zhang C; Yang H; Qin W; Liu C; Qi Z; Chen N; Li K Front Hum Neurosci; 2017; 11():609. PubMed ID: 29375338 [TBL] [Abstract][Full Text] [Related]
20. Using resting state functional connectivity to unravel networks of tinnitus. Husain FT; Schmidt SA Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]