These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27729870)

  • 1. Criticality Maximizes Complexity in Neural Tissue.
    Timme NM; Marshall NJ; Bennett N; Ripp M; Lautzenhiser E; Beggs JM
    Front Physiol; 2016; 7():425. PubMed ID: 27729870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.
    Marshall N; Timme NM; Bennett N; Ripp M; Lautzenhiser E; Beggs JM
    Front Physiol; 2016; 7():250. PubMed ID: 27445842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG.
    Dürschmid S; Reichert C; Walter N; Hinrichs H; Heinze HJ; Ohl FW; Tononi G; Deliano M
    PLoS One; 2020; 15(6):e0233589. PubMed ID: 32525940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural criticality from effective latent variables.
    Morrell MC; Nemenman I; Sederberg A
    Elife; 2024 Mar; 12():. PubMed ID: 38470471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural criticality from effective latent variables.
    Morrell M; Nemenman I; Sederberg AJ
    ArXiv; 2023 Oct; ():. PubMed ID: 36713239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal avalanches: Where temporal complexity and criticality meet.
    Dehghani-Habibabadi M; Zare M; Shahbazi F; Usefie-Mafahim J; Grigolini P
    Eur Phys J E Soft Matter; 2017 Nov; 40(11):101. PubMed ID: 29188466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality.
    Srinivasan K; Ribeiro TL; Kells P; Plenz D
    bioRxiv; 2024 Jun; ():. PubMed ID: 38464324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of power laws in noncritical neuronal systems.
    Faqeeh A; Osat S; Radicchi F; Gleeson JP
    Phys Rev E; 2019 Jul; 100(1-1):010401. PubMed ID: 31499795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike avalanches in vivo suggest a driven, slightly subcritical brain state.
    Priesemann V; Wibral M; Valderrama M; Pröpper R; Le Van Quyen M; Geisel T; Triesch J; Nikolić D; Munk MH
    Front Syst Neurosci; 2014; 8():108. PubMed ID: 25009473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes
    Mellor NG; Graham ES; Unsworth CP
    Front Physiol; 2022; 13():808730. PubMed ID: 35784870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep.
    Dehghani N; Hatsopoulos NG; Haga ZD; Parker RA; Greger B; Halgren E; Cash SS; Destexhe A
    Front Physiol; 2012; 3():302. PubMed ID: 22934053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural field theory of neural avalanche exponents.
    Robinson PA
    Biol Cybern; 2021 Jun; 115(3):237-243. PubMed ID: 33939016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling of avalanche shape and activity power spectrum in neuronal networks.
    Nandi MK; Sarracino A; Herrmann HJ; de Arcangelis L
    Phys Rev E; 2022 Aug; 106(2-1):024304. PubMed ID: 36109993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network.
    Del Papa B; Priesemann V; Triesch J
    PLoS One; 2017; 12(5):e0178683. PubMed ID: 28552964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states.
    Lotfi N; Fontenele AJ; Feliciano T; Aguiar LAA; de Vasconcelos NAP; Soares-Cunha C; Coimbra B; Rodrigues AJ; Sousa N; Copelli M; Carelli PV
    Phys Rev E; 2020 Jul; 102(1-1):012408. PubMed ID: 32795006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal organization of resting brain activity at the thermodynamic critical point.
    Yu S; Yang H; Shriki O; Plenz D
    Front Syst Neurosci; 2013; 7():42. PubMed ID: 23986660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized criticality in neural networks from activity-based rewiring.
    Landmann S; Baumgarten L; Bornholdt S
    Phys Rev E; 2021 Mar; 103(3-1):032304. PubMed ID: 33862737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.