BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27730334)

  • 1. pheS
    Zhou C; Shi L; Ye B; Feng H; Zhang J; Zhang R; Yan X
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):217-227. PubMed ID: 27730334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the selection efficiency of the counter-selection marker pheS* for the genetic engineering of Bacillus amyloliquefaciens.
    Kharchenko MS; Teslya PN; Babaeva MN; Zakataeva NP
    J Microbiol Methods; 2018 May; 148():18-21. PubMed ID: 29596960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counterselection employing mutated pheS for markerless genetic deletion in Bacteroides species.
    Kino Y; Nakayama-Imaohji H; Fujita M; Tada A; Yoneda S; Murakami K; Hashimoto M; Hayashi T; Okazaki K; Kuwahara T
    Anaerobe; 2016 Dec; 42():81-88. PubMed ID: 27639596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pheS* as a counter-selectable marker for marker-free genetic manipulations in Bacillus anthracis.
    Wang YC; Yuan LS; Tao HX; Jiang W; Liu CJ
    J Microbiol Methods; 2018 Aug; 151():35-38. PubMed ID: 29859216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Counterselection for Methylococcus capsulatus (Bath) by Using a Mutated
    Ishikawa M; Yokoe S; Kato S; Hori K
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266726
    [No Abstract]   [Full Text] [Related]  

  • 6. Bacillus subtilis phenylalanyl-tRNA synthetase genes: cloning and expression in Escherichia coli and B. subtilis.
    Brakhage AA; Putzer H; Shazand K; Röschenthaler RJ; Grunberg-Manago M
    J Bacteriol; 1989 Feb; 171(2):1228-32. PubMed ID: 2492510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular engineering of a PheS counterselection marker for improved operating efficiency in Escherichia coli.
    Miyazaki K
    Biotechniques; 2015 Feb; 58(2):86-8. PubMed ID: 25652032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria.
    Xin Y; Guo T; Mu Y; Kong J
    Microb Cell Fact; 2017 Jul; 16(1):116. PubMed ID: 28679374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29.
    Yu C; Jin J; Meng LQ; Xia HH; Yuan HF; Wang J; Yu DS; Zhao XY; Sha CQ
    Cell Mol Biol (Noisy-le-grand); 2017 May; 63(5):19-24. PubMed ID: 28719340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing.
    Kröber M; Verwaaijen B; Wibberg D; Winkler A; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 231():212-223. PubMed ID: 27312701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus.
    Schuster CF; Howard SA; Gründling A
    Microbiology (Reading); 2019 May; 165(5):572-584. PubMed ID: 30942689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic tools for allelic replacement in Burkholderia species.
    Barrett AR; Kang Y; Inamasu KS; Son MS; Vukovich JM; Hoang TT
    Appl Environ Microbiol; 2008 Jul; 74(14):4498-508. PubMed ID: 18502918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis.
    Geraskina NV; Butov IA; Yomantas YA; Stoynova NV
    Microbiol Res; 2015 Feb; 171():90-6. PubMed ID: 25441601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Counterselection System for Listeria monocytogenes and Its Use To Characterize the Monocin Genomic Region of Strain 10403S.
    Argov T; Rabinovich L; Sigal N; Herskovits AA
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28039138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9.
    Shao J; Li S; Zhang N; Cui X; Zhou X; Zhang G; Shen Q; Zhang R
    Microb Cell Fact; 2015 Sep; 14():130. PubMed ID: 26337367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile mini-mazF-cassette for marker-free targeted genetic modification in Bacillus subtilis.
    Lin Z; Deng B; Jiao Z; Wu B; Xu X; Yu D; Li W
    J Microbiol Methods; 2013 Nov; 95(2):207-14. PubMed ID: 23911571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes.
    Brakhage AA; Wozny M; Putzer H
    Biochimie; 1990 Oct; 72(10):725-34. PubMed ID: 2127701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial induction of genetic competence in Bacillus amyloliquefaciens isolates.
    Chen XT; Ji JB; Liu YC; Ye B; Zhou CY; Yan X
    Biotechnol Lett; 2016 Dec; 38(12):2109-2117. PubMed ID: 27578391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains.
    Zakataeva NP; Nikitina OV; Gronskiy SV; Romanenkov DV; Livshits VA
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1201-9. PubMed ID: 19820923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.
    Zhou X; Zhang N; Xia L; Li Q; Shao J; Shen Q; Zhang R
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.