BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27730602)

  • 21. Isolation of Arabidopsis Leaf Peroxisomes and the Peroxisomal Membrane.
    Reumann S; Lisik P
    Methods Mol Biol; 2017; 1511():97-112. PubMed ID: 27730605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification of Nongreen Plastids (Proplastids and Amyloplasts) from Angiosperms, and Isolation of Their Envelope Membranes.
    Alban C; Journet EP
    Methods Mol Biol; 2018; 1829():145-164. PubMed ID: 29987720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red bell pepper chromoplasts exhibit in vitro import competency and membrane targeting of passenger proteins from the thylakoidal sec and DeltapH pathways but not the chloroplast signal recognition particle pathway.
    Summer EJ; Cline K
    Plant Physiol; 1999 Feb; 119(2):575-84. PubMed ID: 9952453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterisation and antioxidant activity.
    Mateos RM; León AM; Sandalio LM; Gómez M; del Río LA; Palma JM
    J Plant Physiol; 2003 Dec; 160(12):1507-16. PubMed ID: 14717445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.
    Siddique MA; Grossmann J; Gruissem W; Baginsky S
    Plant Cell Physiol; 2006 Dec; 47(12):1663-73. PubMed ID: 17098784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts.
    Angaman DM; Petrizzo R; Hernández-Gras F; Romero-Segura C; Pateraki I; Busquets M; Boronat A
    Plant Methods; 2012 Jan; 8(1):1. PubMed ID: 22243738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromoplast-Specific Proteins in Capsicum annuum.
    Hadjeb N; Gounaris I; Price CA
    Plant Physiol; 1988 Sep; 88(1):42-5. PubMed ID: 16666276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.
    Lenucci MS; Serrone L; De Caroli M; Fraser PD; Bramley PM; Piro G; Dalessandro G
    J Agric Food Chem; 2012 Feb; 60(7):1764-75. PubMed ID: 22264157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato.
    Ling Q; Sadali NM; Soufi Z; Zhou Y; Huang B; Zeng Y; Rodriguez-Concepcion M; Jarvis RP
    Nat Plants; 2021 May; 7(5):655-666. PubMed ID: 34007040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of Vacuoles and the Tonoplast.
    Zouhar J
    Methods Mol Biol; 2017; 1511():113-118. PubMed ID: 27730606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization under quasi-native conditions of the capsanthin/capsorubin synthase from Capsicum annuum L.
    Piano D; Cocco E; Guadalupi G; Kalaji HM; Kirkpatrick J; Farci D
    Plant Physiol Biochem; 2019 Oct; 143():165-175. PubMed ID: 31505449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues.
    Matadha NY; Mohapatra S; Siddamallaiah L; Udupi VR; Gadigeppa S; Raja DP
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):6077-6086. PubMed ID: 30613891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts.
    Pozueta-Romero J; Rafia F; Houlné G; Cheniclet C; Carde JP; Schantz ML; Schantz R
    Plant Physiol; 1997 Nov; 115(3):1185-94. PubMed ID: 9390444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plastid and stromule morphogenesis in tomato.
    Pyke KA; Howells CA
    Ann Bot; 2002 Nov; 90(5):559-66. PubMed ID: 12466096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation and changes in the antioxidant system of chloroplasts and chromoplasts isolated from green and mature pepper fruits.
    Martí MC; Camejo D; Olmos E; Sandalio LM; Fernández-García N; Jiménez A; Sevilla F
    Plant Biol (Stuttg); 2009 Jul; 11(4):613-24. PubMed ID: 19538399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening.
    D'Andrea L; Simon-Moya M; Llorente B; Llamas E; Marro M; Loza-Alvarez P; Li L; Rodriguez-Concepcion M
    J Exp Bot; 2018 Mar; 69(7):1557-1568. PubMed ID: 29385595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of Autolysosomes from Tobacco BY-2 Cells.
    Takatsuka C; Inoue-Aono Y; Moriyasu Y
    Methods Mol Biol; 2017; 1511():151-161. PubMed ID: 27730609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation of Cytosolic Ribosomes.
    Klang Årstrand H; Turkina MV
    Methods Mol Biol; 2017; 1511():241-247. PubMed ID: 27730616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit.
    Bruno AK; Wetzel CM
    J Exp Bot; 2004 Dec; 55(408):2541-8. PubMed ID: 15475376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper.
    Barry CS; McQuinn RP; Chung MY; Besuden A; Giovannoni JJ
    Plant Physiol; 2008 May; 147(1):179-87. PubMed ID: 18359841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.