BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27731412)

  • 1. The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles.
    Cervera J; Meseguer S; Mafe S
    Sci Rep; 2016 Oct; 6():35201. PubMed ID: 27731412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers.
    Cervera J; Pai VP; Levin M; Mafe S
    Prog Biophys Mol Biol; 2019 Dec; 149():39-53. PubMed ID: 31255702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations.
    Cervera J; Manzanares JA; Mafe S
    Phys Chem Chem Phys; 2018 Apr; 20(14):9343-9354. PubMed ID: 29564429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics.
    Cervera J; Alcaraz A; Mafe S
    Sci Rep; 2016 Feb; 6():20403. PubMed ID: 26841954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach.
    Cervera J; Pietak A; Levin M; Mafe S
    Bioelectrochemistry; 2018 Oct; 123():45-61. PubMed ID: 29723806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity.
    Cervera J; Meseguer S; Mafe S
    J Phys Chem B; 2017 Aug; 121(32):7602-7613. PubMed ID: 28714698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations.
    Cervera J; Ramirez P; Levin M; Mafe S
    Phys Rev E; 2020 Nov; 102(5-1):052412. PubMed ID: 33327213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting instructive electric potential patterns in multicellular systems: External actions and endogenous processes.
    Cervera J; Levin M; Mafe S
    Biochim Biophys Acta Gen Subj; 2023 Oct; 1867(10):130440. PubMed ID: 37527731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrical Coupling of Single-Cell States in Multicellular Systems.
    Cervera J; Levin M; Mafe S
    J Phys Chem Lett; 2020 May; 11(9):3234-3241. PubMed ID: 32243754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions.
    Cervera J; Meseguer S; Levin M; Mafe S
    Bioelectrochemistry; 2020 Apr; 132():107410. PubMed ID: 31821903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles.
    Krüger J; Bohrmann J
    BMC Dev Biol; 2015 Jan; 15():1. PubMed ID: 25591552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model.
    Cervera J; Meseguer S; Mafe S
    ACS Omega; 2018 Oct; 3(10):13567-13575. PubMed ID: 30411043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate.
    Riol A; Cervera J; Levin M; Mafe S
    Cancers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.
    Cervera J; Manzanares JA; Mafe S
    J Phys Chem B; 2015 Feb; 119(7):2968-78. PubMed ID: 25622192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane tension influences the spike propagation between voltage-gated ion channel clusters of excitable membranes.
    Assmann MA; Lenz P
    Phys Biol; 2014 Aug; 11(4):046006. PubMed ID: 25051247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine.
    Pietak A; Levin M
    Front Bioeng Biotechnol; 2016; 4():55. PubMed ID: 27458581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis in voltage-gated channels.
    Villalba-Galea CA
    Channels (Austin); 2017 Mar; 11(2):140-155. PubMed ID: 27689426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States.
    Cervera J; Manzanares JA; Mafe S; Levin M
    J Phys Chem B; 2019 May; 123(18):3924-3934. PubMed ID: 31003574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels.
    Summhammer J; Salari V; Bernroider G
    J Integr Neurosci; 2012 Jun; 11(2):123-35. PubMed ID: 22744820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to electrical modeling of single and multiple cells.
    Gowrishankar TR; Weaver JC
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3203-8. PubMed ID: 12626744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.