These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27731447)

  • 21. The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette.
    Kim IW; Peng XH; Sauna ZE; FitzGerald PC; Xia D; Müller M; Nandigama K; Ambudkar SV
    Biochemistry; 2006 Jun; 45(24):7605-16. PubMed ID: 16768456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein.
    Carrier I; Julien M; Gros P
    Biochemistry; 2003 Nov; 42(44):12875-85. PubMed ID: 14596601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capturing Substrate Translocation in an ABC Exporter at the Atomic Level.
    Göddeke H; Schäfer LV
    J Am Chem Soc; 2020 Jul; 142(29):12791-12801. PubMed ID: 32578427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site.
    Ramaen O; Leulliot N; Sizun C; Ulryck N; Pamlard O; Lallemand JY; Tilbeurgh Hv; Jacquet E
    J Mol Biol; 2006 Jun; 359(4):940-9. PubMed ID: 16697012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter.
    Jones PM; George AM
    J Phys Chem A; 2012 Mar; 116(11):3004-13. PubMed ID: 22369471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformation space of a heterodimeric ABC exporter under turnover conditions.
    Hofmann S; Januliene D; Mehdipour AR; Thomas C; Stefan E; Brüchert S; Kuhn BT; Geertsma ER; Hummer G; Tampé R; Moeller A
    Nature; 2019 Jul; 571(7766):580-583. PubMed ID: 31316210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the degenerate nucleotide binding site in type I ABC exporters.
    Stockner T; Gradisch R; Schmitt L
    FEBS Lett; 2020 Dec; 594(23):3815-3838. PubMed ID: 33179257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding.
    Hattendorf DA; Lindquist SL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2732-7. PubMed ID: 11867765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Function of the ABC signature sequences in the human multidrug resistance protein 1.
    Ren XQ; Furukawa T; Haraguchi M; Sumizawa T; Aoki S; Kobayashi M; Akiyama S
    Mol Pharmacol; 2004 Jun; 65(6):1536-42. PubMed ID: 15155846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations.
    Verdon G; Albers SV; Dijkstra BW; Driessen AJ; Thunnissen AM
    J Mol Biol; 2003 Jul; 330(2):343-58. PubMed ID: 12823973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation.
    Hohl M; Briand C; Grütter MG; Seeger MA
    Nat Struct Mol Biol; 2012 Mar; 19(4):395-402. PubMed ID: 22447242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure based investigation on the binding interaction of transport proteins in leishmaniasis: insights from molecular simulation.
    Singh S; Mandlik V
    Mol Biosyst; 2015 May; 11(5):1251-9. PubMed ID: 25761976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-helix influences dimerization of the ATP-binding cassette (ABC) transporter associated with antigen processing 1 (TAP1) nucleotide-binding domain.
    Vakkasoglu AS; Srikant S; Gaudet R
    PLoS One; 2017; 12(5):e0178238. PubMed ID: 28542489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations.
    Weng JW; Fan KN; Wang WN
    J Biol Chem; 2010 Jan; 285(5):3053-63. PubMed ID: 19996093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes induced by ATP-hydrolysis in an ABC transporter: a molecular dynamics study of the Sav1866 exporter.
    Oliveira AS; Baptista AM; Soares CM
    Proteins; 2011 Jun; 79(6):1977-90. PubMed ID: 21488101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of conserved aromatic residues in the A-loop of the ABC transporter ABCB1A (mouse Mdr3).
    Carrier I; Urbatsch IL; Senior AE; Gros P
    FEBS Lett; 2007 Jan; 581(2):301-8. PubMed ID: 17214987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD.
    Oloo EO; Tieleman DP
    J Biol Chem; 2004 Oct; 279(43):45013-9. PubMed ID: 15308647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics and structural changes induced by ATP binding in SAV1866, a bacterial ABC exporter.
    Becker JP; Van Bambeke F; Tulkens PM; Prévost M
    J Phys Chem B; 2010 Dec; 114(48):15948-57. PubMed ID: 21069970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle.
    Jones PM; George AM
    Proteins; 2009 May; 75(2):387-96. PubMed ID: 18831048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.