These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27731461)

  • 1. Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.
    Beauvier E; Bodea S; Pocheau A
    Soft Matter; 2016 Nov; 12(43):8935-8941. PubMed ID: 27731461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Front propagation in a regular vortex lattice: Dependence on the vortex structure.
    Beauvier E; Bodea S; Pocheau A
    Phys Rev E; 2017 Nov; 96(5-1):053109. PubMed ID: 29347682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front propagation in a laminar cellular flow: shapes, velocities, and least time criterion.
    Pocheau A; Harambat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036304. PubMed ID: 18517508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective front propagation in steady cellular flows: A least time criterion.
    Pocheau A; Harambat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065304. PubMed ID: 16906901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barriers to front propagation in ordered and disordered vortex flows.
    Bargteil D; Solomon T
    Chaos; 2012 Sep; 22(3):037103. PubMed ID: 23020494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady Marangoni flow traveling with chemical fronts.
    Rongy L; De Wit A
    J Chem Phys; 2006 Apr; 124(16):164705. PubMed ID: 16674155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental studies of coherent structures in an advection-reaction-diffusion system.
    Gowen S; Solomon T
    Chaos; 2015 Aug; 25(8):087403. PubMed ID: 26328574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells.
    Jarrige N; Bou Malham I; Martin J; Rakotomalala N; Salin D; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066311. PubMed ID: 20866526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convective instabilities derived from dissipation of chemical energy.
    Simoyi RH
    Chaos; 2019 Aug; 29(8):083136. PubMed ID: 31472521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern of reaction diffusion fronts in laminar flows.
    Leconte M; Martin J; Rakotomalala N; Salin D
    Phys Rev Lett; 2003 Mar; 90(12):128302. PubMed ID: 12688909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of topological transformations of optical vortices in two-dimensional photonic lattices.
    Bezryadina A; Neshev DN; Desyatnikov A; Young J; Chen Z; Kivshar YS
    Opt Express; 2006 Sep; 14(18):8317-27. PubMed ID: 19529208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A + B → C reaction fronts in Hele-Shaw cells under modulated gravitational acceleration.
    Eckert K; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 May; 14(20):7337-45. PubMed ID: 22523751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of circular arrangements of vorticity in two dimensions.
    Swaminathan RV; Ravichandran S; Perlekar P; Govindarajan R
    Phys Rev E; 2016 Jul; 94(1-1):013105. PubMed ID: 27575215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematically Templated Vortex Lattices in Superconducting FeSe.
    Song SY; Hua C; Bell L; Ko W; Fangohr H; Yan J; Halász GB; Dumitrescu EF; Lawrie BJ; Maksymovych P
    Nano Lett; 2023 Apr; 23(7):2822-2830. PubMed ID: 36940166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of vortex nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates.
    Williams RA; Al-Assam S; Foot CJ
    Phys Rev Lett; 2010 Feb; 104(5):050404. PubMed ID: 20366752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barriers to front propagation in laminar, three-dimensional fluid flows.
    Doan M; Simons JJ; Lilienthal K; Solomon T; Mitchell KA
    Phys Rev E; 2018 Mar; 97(3-1):033111. PubMed ID: 29776060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory behavior of vortex-lattice melting transition line in mesoscopic Bi_{2}Sr_{2}CaCu_{2}O_{8+y} superconductors.
    Ooi S; Mochiku T; Tachiki M; Hirata K
    Phys Rev Lett; 2015 Feb; 114(8):087001. PubMed ID: 25768774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dependence of scaling law on stoichiometry for horizontally propagating vertical chemical fronts.
    Pópity-Tóth É; Horváth D; Tóth Á
    J Chem Phys; 2011 Aug; 135(7):074506. PubMed ID: 21861575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.