These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27731520)

  • 1. Dissipation of double-stranded RNA in aquatic microcosms.
    Albright VC; Wong CR; Hellmich RL; Coats JR
    Environ Toxicol Chem; 2017 May; 36(5):1249-1253. PubMed ID: 27731520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic fate of a double-stranded RNA in a sediment---water system following an over-water application.
    Fischer JR; Zapata F; Dubelman S; Mueller GM; Uffman JP; Jiang C; Jensen PD; Levine SL
    Environ Toxicol Chem; 2017 Mar; 36(3):727-734. PubMed ID: 27530554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation of DvSnf7 RNA from Late-Season Maize Tissue in Aquatic Microcosms.
    Fischer JR; MacQuarrie GR; Malven M; Song Z; Rogan G
    Environ Toxicol Chem; 2020 May; 39(5):1032-1040. PubMed ID: 32077138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipation of a commercial mixture of polyoxyethylene amine surfactants in aquatic outdoor microcosms: Effect of water depth and sediment organic carbon.
    Rodriguez-Gil JL; Lissemore L; Solomon K; Hanson M
    Sci Total Environ; 2016 Apr; 550():449-458. PubMed ID: 26845181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling chemical accumulation in sediment of small waterbodies accounting for sediment transport and water-sediment exchange processes over long periods.
    Patterson DA; Strehmel A; Erzgräber B; Hammel K
    Environ Toxicol Chem; 2017 Dec; 36(12):3223-3231. PubMed ID: 28727171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and stereoselective behavior of benalaxyl in a water-sediment microcosm.
    Liu M; Liu D; Xu Y; Jing X; Zhou Z; Wang P
    J Agric Food Chem; 2015 Jun; 63(21):5205-11. PubMed ID: 26009811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms.
    Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and effects of the insecticide-miticide chlorfenapyr in outdoor aquatic microcosms.
    Rand GM
    Ecotoxicol Environ Saf; 2004 May; 58(1):50-60. PubMed ID: 15087163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.
    Hand LH; Kuet SF; Lane MC; Maund SJ; Warinton JS; Hill IR
    Environ Toxicol Chem; 2001 Aug; 20(8):1740-5. PubMed ID: 11491557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation of isocarbophos enantiomers from laboratory-contaminated aquatic environment by tubificid worms.
    Liu T; Diao J; Di S; Zhou Z
    Chemosphere; 2015 Apr; 124():77-82. PubMed ID: 25475969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies.
    Rader KJ; Carbonaro RF; van Hullebusch ED; Baken S; Delbeke K
    Environ Toxicol Chem; 2019 Jul; 38(7):1386-1399. PubMed ID: 30969442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the fate and distribution of methoxyfenozide in a water-plant-fish-sediment microcosm using a multimedia fugacity model.
    Chen Y; Liu X; Dong F; Xu J; Wu X; Zheng Y
    Sci Total Environ; 2021 Feb; 755(Pt 1):142482. PubMed ID: 33011597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms.
    Wang N; Besser JM; Buckler DR; Honegger JL; Ingersoll CG; Johnson BT; Kurtzweil ML; Macgregor J; McKee MJ
    Chemosphere; 2005 Apr; 59(4):545-51. PubMed ID: 15788177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment.
    Wang F; Gao J; Zhai W; Cui J; Liu D; Zhou Z; Wang P
    Ecotoxicol Environ Saf; 2021 Jan; 208():111717. PubMed ID: 33396048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.
    Xiong J; An T; Li G; Peng P
    Chemosphere; 2017 Oct; 184():120-126. PubMed ID: 28586652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of fluorotelomer acids in a soil-water microcosm.
    Myers AL; Mabury SA
    Environ Toxicol Chem; 2010 Aug; 29(8):1689-95. PubMed ID: 20821620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change.
    Yang Y; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 470-471():1184-8. PubMed ID: 24246941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.
    Ariyarathna T; Vlahos P; Smith RW; Fallis S; Groshens T; Tobias C
    Environ Toxicol Chem; 2017 May; 36(5):1170-1180. PubMed ID: 27791286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.