BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27731632)

  • 1. Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries.
    Fan CY; Liu SY; Li HH; Wang HF; Wang HC; Wu XL; Sun HZ; Zhang JP
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28689-28699. PubMed ID: 27731632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Cathode Design of Three-Layered Configuration for High-Energy Li-S Batteries.
    Liu SY; Fan CY; Shi YH; Wang HC; Wu XL; Zhang JP
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):509-516. PubMed ID: 29243916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.
    Zhao Q; Zhu Q; Miao J; Guan Z; Liu H; Chen R; An Y; Wu F; Xu B
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10882-10889. PubMed ID: 29533653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.
    Kim JH; Seo J; Choi J; Shin D; Carter M; Jeon Y; Wang C; Hu L; Paik U
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20092-9. PubMed ID: 27437758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries.
    Hua W; Yang Z; Nie H; Li Z; Yang J; Guo Z; Ruan C; Chen X; Huang S
    ACS Nano; 2017 Feb; 11(2):2209-2218. PubMed ID: 28146627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries.
    Fan CY; Yuan HY; Li HH; Wang HF; Li WL; Sun HZ; Wu XL; Zhang JP
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16108-15. PubMed ID: 27285289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Ion-Sieve Constructed by 2D Materials as an Interlayer for Li-S Batteries.
    Deng DR; Bai CD; Xue F; Lei J; Xu P; Zheng MS; Dong QF
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11474-11480. PubMed ID: 30839192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery.
    Liang G; Wu J; Qin X; Liu M; Li Q; He YB; Kim JK; Li B; Kang F
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23105-13. PubMed ID: 27508357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Root-like TiN/C@S Nanofiber as a Freestanding Cathode with High Sulfur Loading for Lithium-Sulfur Batteries.
    Liao Y; Xiang J; Yuan L; Hao Z; Gu J; Chen X; Yuan K; Kalambate PK; Huang Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37955-37962. PubMed ID: 30360064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight Reduced Graphene Oxide@MoS
    Tan L; Li X; Wang Z; Guo H; Wang J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3707-3713. PubMed ID: 29300086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-MXene-Based Integrated Electrode Constructed by Ti
    Dong Y; Zheng S; Qin J; Zhao X; Shi H; Wang X; Chen J; Wu ZS
    ACS Nano; 2018 Mar; 12(3):2381-2388. PubMed ID: 29455522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Theoretically Cycling-Stable Lithium-Sulfur Battery Using a Foldable and Compositionally Heterogeneous Cathode.
    Zhong L; Yang K; Guan R; Wang L; Wang S; Han D; Xiao M; Meng Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43640-43647. PubMed ID: 29172445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.
    Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F
    ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities.
    Pan H; Cheng Z; Zhong H; Wang R; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Confined Sulfur Nanoparticles Encapsulated in Hollow TiO
    Fan H; Tang Q; Chen X; Fan B; Chen S; Hu A
    Chem Asian J; 2016 Oct; 11(20):2911-2917. PubMed ID: 27468952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carbon foam-supported high sulfur loading composite as a self-supported cathode for flexible lithium-sulfur batteries.
    Zhang M; Amin K; Cheng M; Yuan H; Mao L; Yan W; Wei Z
    Nanoscale; 2018 Nov; 10(46):21790-21797. PubMed ID: 30457148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.