These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27731868)

  • 1. Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents.
    Wang TH; Cheng YJ; Wu YY; Lin CA; Chiang CC; Hsieh YK; Wang CF; Huang CP
    Phys Chem Chem Phys; 2016 Oct; 18(42):29300-29307. PubMed ID: 27731868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Titanium-Doped SiOx Passivation Layer for Greatly Enhanced Performance of a Hematite-Based Photoelectrochemical System.
    Ahn HJ; Yoon KY; Kwak MJ; Jang JH
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9922-6. PubMed ID: 27358249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface Engineering and its Effect on WO
    Liu Y; Wygant BR; Mabayoje O; Lin J; Kawashima K; Kim JH; Li W; Li J; Mullins CB
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12639-12650. PubMed ID: 29608854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential versus current state of water splitting with hematite.
    Zandi O; Hamann TW
    Phys Chem Chem Phys; 2015 Sep; 17(35):22485-503. PubMed ID: 26267040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions.
    Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.
    Gui Q; Xu Z; Zhang H; Cheng C; Zhu X; Yin M; Song Y; Lu L; Chen X; Li D
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17053-8. PubMed ID: 25198058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting.
    Tamirat AG; Dubale AA; Su WN; Chen HM; Hwang BJ
    Phys Chem Chem Phys; 2017 Aug; 19(31):20881-20890. PubMed ID: 28745359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foreign In
    Bu X; Wang G; Tian Y
    Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.
    Xiong D; Li W; Wang X; Liu L
    Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.
    Zandi O; Hamann TW
    J Phys Chem Lett; 2014 May; 5(9):1522-6. PubMed ID: 26270090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.