These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 27731868)
21. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. Gurudayal ; Peter LM; Wong LH; Abdi FF ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583 [TBL] [Abstract][Full Text] [Related]
22. Accelerating the charge separation of ZnFe Lan Y; Liu Z; Guo Z; Ruan M; Xin Y J Colloid Interface Sci; 2019 Sep; 552():111-121. PubMed ID: 31112807 [TBL] [Abstract][Full Text] [Related]
23. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent. Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677 [TBL] [Abstract][Full Text] [Related]
24. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis. Yan D; Tao J; Kisslinger K; Cen J; Wu Q; Orlov A; Liu M Nanoscale; 2015 Nov; 7(44):18515-23. PubMed ID: 26499938 [TBL] [Abstract][Full Text] [Related]
25. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
26. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting. Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172 [TBL] [Abstract][Full Text] [Related]
27. Highly Conformal Deposition of an Ultrathin FeOOH Layer on a Hematite Nanostructure for Efficient Solar Water Splitting. Kim JY; Youn DH; Kang K; Lee JS Angew Chem Int Ed Engl; 2016 Aug; 55(36):10854-8. PubMed ID: 27489101 [TBL] [Abstract][Full Text] [Related]
28. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595 [TBL] [Abstract][Full Text] [Related]
29. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature. Cho ES; Kang MJ; Kang YS Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403 [TBL] [Abstract][Full Text] [Related]
30. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051 [TBL] [Abstract][Full Text] [Related]
31. Multistep Surface Trap State Finishing Based on in Situ One-Step MOF Modification over Hematite for Dramatically Enhanced Solar Water Oxidation. Chen S; Li J; Wang J; Zhu H; Bai J; Zhang Y; Zhou T; Zhou M; Zhou B ACS Appl Mater Interfaces; 2020 Jul; 12(30):33638-33646. PubMed ID: 32666781 [TBL] [Abstract][Full Text] [Related]
32. Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Jeon BH; Dempsey BA; Burgos WD; Royer RA Water Res; 2003 Oct; 37(17):4135-42. PubMed ID: 12946895 [TBL] [Abstract][Full Text] [Related]
33. Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes. Wang Z; Lyu M; Chen P; Wang S; Wang L Phys Chem Chem Phys; 2018 Sep; 20(35):22629-22635. PubMed ID: 30131993 [TBL] [Abstract][Full Text] [Related]
34. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
35. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247 [TBL] [Abstract][Full Text] [Related]
36. Self-improvement of solar water oxidation for the continuously-irradiated hematite photoanode. Zhou Z; Wu S; Xiao C; Li L; Shao W; Ding H; Wen L; Li X Dalton Trans; 2019 Oct; 48(40):15151-15159. PubMed ID: 31565712 [TBL] [Abstract][Full Text] [Related]
37. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Klahr BM; Martinson AB; Hamann TW Langmuir; 2011 Jan; 27(1):461-8. PubMed ID: 21126056 [TBL] [Abstract][Full Text] [Related]
38. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Thorne JE; Jang JW; Liu EY; Wang D Chem Sci; 2016 May; 7(5):3347-3354. PubMed ID: 29997828 [TBL] [Abstract][Full Text] [Related]
39. Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Liu J; Shahid M; Ko YS; Kim E; Ahn TK; Park JH; Kwon YU Phys Chem Chem Phys; 2013 Jun; 15(24):9775-82. PubMed ID: 23674049 [TBL] [Abstract][Full Text] [Related]
40. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. Sivula K; Le Formal F; Grätzel M ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]