BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27731971)

  • 41. Melt-Processable Semicrystalline Polyimides Based on 1,4-Bis(3,4-dicarboxyphenoxy)benzene Dianhydride (HQDPA): Synthesis, Crystallization, and Melting Behavior.
    Zhang H; Wang W; Chen G; Zhang A; Fang X
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile strategy to prepare polyimide nanofiber assembled aerogel for effective airborne particles filtration.
    Qiao S; Kang S; Zhu J; Wang Y; Yu J; Hu Z
    J Hazard Mater; 2021 Aug; 415():125739. PubMed ID: 34088199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators.
    Kobayashi Y; Saito T; Isogai A
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10394-7. PubMed ID: 24985785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanically Strong and Tailorable Polyimide Aerogels Prepared with Novel Silicone Polymer Crosslinkers.
    Zhang Z; Deng Y; Lun Z; Zhang X; Yan M; He P; Li C; Pan Y
    Gels; 2022 Jan; 8(1):. PubMed ID: 35049592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.
    Liu A; Medina L; Berglund LA
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6453-6461. PubMed ID: 28155270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D Printing of Lightweight Polyimide Honeycombs with the High Specific Strength and Temperature Resistance.
    Wang C; Ma S; Li D; Zhao J; Zhou H; Wang D; Zhou D; Gan T; Wang D; Liu C; Qu C; Chen C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15690-15700. PubMed ID: 33689262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.
    Chen HB; Zhao Y; Shen P; Wang JS; Huang W; Schiraldi DA
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20208-14. PubMed ID: 26287451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrospun nanofiber belts made from high performance copolyimide.
    Chen S; Hu P; Greiner A; Cheng C; Cheng H; Chen F; Hou H
    Nanotechnology; 2008 Jan; 19(1):015604. PubMed ID: 21730539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification.
    Lee B; Lee S; Lee M; Jeong DH; Baek Y; Yoon J; Kim YH
    Nanoscale; 2015 Apr; 7(15):6782-9. PubMed ID: 25807182
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption.
    Lin YF; Hsu SH
    J Colloid Interface Sci; 2017 Jan; 485():152-158. PubMed ID: 27662027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailoring elastic properties of silica aerogels cross-linked with polystyrene.
    Nguyen BN; Meador MA; Tousley ME; Shonkwiler B; McCorkle L; Scheiman DA; Palczer A
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):621-30. PubMed ID: 20355984
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyimide aerogels for ballistic impact protection.
    Malakooti S; Vivod SL; Pereira M; Ruggeri CR; Revilock DM; Zhang R; Guo H; Scheiman DA; McCorkle LS; Lu H
    Sci Rep; 2022 Aug; 12(1):13933. PubMed ID: 35978097
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays.
    Zu G; Kanamori K; Nakanishi K; Lu X; Yu K; Huang J; Sugimura H
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43533-43542. PubMed ID: 31674184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cocoon-in-web-like superhydrophobic aerogels from hydrophilic polyurea and use in environmental remediation.
    Leventis N; Chidambareswarapattar C; Bang A; Sotiriou-Leventis C
    ACS Appl Mater Interfaces; 2014 May; 6(9):6872-82. PubMed ID: 24758407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide.
    Ge X; Shan Y; Wu L; Mu X; Peng H; Jiang Y
    Carbohydr Polym; 2018 Oct; 197():277-283. PubMed ID: 30007614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy.
    Guo L; Chen Z; Lyu S; Fu F; Wang S
    Carbohydr Polym; 2018 Jan; 179():333-340. PubMed ID: 29111059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Applications of functionalized polyethylene terephthalate aerogels from plastic bottle waste.
    Le DK; Leung RIH; Er ASR; Zhang X; Tay XJ; Thai QB; Phan-Thien N; Duong HM
    Waste Manag; 2019 Dec; 100():296-305. PubMed ID: 31568978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Semi-Interpenetrating Polymer Networks Based on Cyanate Ester and Highly Soluble Thermoplastic Polyimide.
    Liu J; Fan W; Lu G; Zhou D; Wang Z; Yan J
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31085996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.