BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27732843)

  • 1. ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.
    Timms RT; Tchasovnikarova IA; Antrobus R; Dougan G; Lehner PJ
    Cell Rep; 2016 Oct; 17(3):653-659. PubMed ID: 27732843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Enzymatic Activity of SETDB1 and Its 1:1 Complex with ATF7IP.
    Basavapathruni A; Gureasko J; Porter Scott M; Hermans W; Godbole A; Leland PA; Boriack-Sjodin PA; Wigle TJ; Copeland RA; Riera TV
    Biochemistry; 2016 Mar; 55(11):1645-51. PubMed ID: 26813693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fibronectin type-III (FNIII) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex.
    Tsusaka T; Fukuda K; Shimura C; Kato M; Shinkai Y
    Epigenetics Chromatin; 2020 Nov; 13(1):52. PubMed ID: 33256805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins.
    Ichimura T; Watanabe S; Sakamoto Y; Aoto T; Fujita N; Nakao M
    J Biol Chem; 2005 Apr; 280(14):13928-35. PubMed ID: 15691849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin.
    Loyola A; Tagami H; Bonaldi T; Roche D; Quivy JP; Imhof A; Nakatani Y; Dent SY; Almouzni G
    EMBO Rep; 2009 Jul; 10(7):769-75. PubMed ID: 19498464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination.
    Tsusaka T; Shimura C; Shinkai Y
    EMBO Rep; 2019 Dec; 20(12):e48297. PubMed ID: 31576654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tri-methylation of ATF7IP by G9a/GLP recruits the chromodomain protein MPP8.
    Tsusaka T; Kikuchi M; Shimazu T; Suzuki T; Sohtome Y; Akakabe M; Sodeoka M; Dohmae N; Umehara T; Shinkai Y
    Epigenetics Chromatin; 2018 Oct; 11(1):56. PubMed ID: 30286792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins.
    Schultz DC; Ayyanathan K; Negorev D; Maul GG; Rauscher FJ
    Genes Dev; 2002 Apr; 16(8):919-32. PubMed ID: 11959841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.
    Tchasovnikarova IA; Timms RT; Matheson NJ; Wals K; Antrobus R; Göttgens B; Dougan G; Dawson MA; Lehner PJ
    Science; 2015 Jun; 348(6242):1481-1485. PubMed ID: 26022416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation.
    Minkovsky A; Sahakyan A; Rankin-Gee E; Bonora G; Patel S; Plath K
    Epigenetics Chromatin; 2014; 7():12. PubMed ID: 25028596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.
    Tchasovnikarova IA; Timms RT; Douse CH; Roberts RC; Dougan G; Kingston RE; Modis Y; Lehner PJ
    Nat Genet; 2017 Jul; 49(7):1035-1044. PubMed ID: 28581500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9: regulation of lysine methyltransferases by physical interaction with their substrates.
    Binda O; LeRoy G; Bua DJ; Garcia BA; Gozani O; Richard S
    Epigenetics; 2010; 5(8):767-75. PubMed ID: 21124070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SETDB1-Mediated Silencing of Retroelements.
    Fukuda K; Shinkai Y
    Viruses; 2020 May; 12(6):. PubMed ID: 32486217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity.
    Ishimoto K; Kawamata N; Uchihara Y; Okubo M; Fujimoto R; Gotoh E; Kakinouchi K; Mizohata E; Hino N; Okada Y; Mochizuki Y; Tanaka T; Hamakubo T; Sakai J; Kodama T; Inoue T; Tachibana K; Doi T
    PLoS One; 2016; 11(10):e0165766. PubMed ID: 27798683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations.
    Irmak D; Fatima A; Gutiérrez-Garcia R; Rinschen MM; Wagle P; Altmüller J; Arrigoni L; Hummel B; Klein C; Frese CK; Sawarkar R; Rada-Iglesias A; Vilchez D
    Hum Mol Genet; 2018 Dec; 27(23):4117-4134. PubMed ID: 30452683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly.
    Sarraf SA; Stancheva I
    Mol Cell; 2004 Aug; 15(4):595-605. PubMed ID: 15327775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation.
    Singh SK; Bahal R; Rasmussen TP
    Exp Cell Res; 2020 Oct; 395(2):112216. PubMed ID: 32768498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells.
    Li H; Rauch T; Chen ZX; Szabó PE; Riggs AD; Pfeifer GP
    J Biol Chem; 2006 Jul; 281(28):19489-500. PubMed ID: 16682412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.
    Park I; Hwang YJ; Kim T; Viswanath ANI; Londhe AM; Jung SY; Sim KM; Min SJ; Lee JE; Seong J; Kim YK; No KT; Ryu H; Pae AN
    J Comput Aided Mol Des; 2017 Oct; 31(10):877-889. PubMed ID: 28879500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation.
    Verschure PJ; van der Kraan I; de Leeuw W; van der Vlag J; Carpenter AE; Belmont AS; van Driel R
    Mol Cell Biol; 2005 Jun; 25(11):4552-64. PubMed ID: 15899859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.