BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27732872)

  • 1. Role of the σ
    Siegel AR; Wemmer DE
    J Mol Biol; 2016 Nov; 428(23):4669-4685. PubMed ID: 27732872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.
    Sysoeva TA; Yennawar N; Allaire M; Nixon BT
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1384-8. PubMed ID: 24316836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus.
    Batchelor JD; Lee PS; Wang AC; Doucleff M; Wemmer DE
    J Mol Biol; 2013 Jan; 425(1):156-70. PubMed ID: 23123379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial Enhancer Binding Proteins-AAA
    Gao F; Danson AE; Ye F; Jovanovic M; Buck M; Zhang X
    Biomolecules; 2020 Feb; 10(3):. PubMed ID: 32106553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54.
    Chen B; Doucleff M; Wemmer DE; De Carlo S; Huang HH; Nogales E; Hoover TR; Kondrashkina E; Guo L; Nixon BT
    Structure; 2007 Apr; 15(4):429-40. PubMed ID: 17437715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of an activator-bound RNA polymerase holoenzyme.
    Bose D; Pape T; Burrows PC; Rappas M; Wigneshweraraj SR; Buck M; Zhang X
    Mol Cell; 2008 Nov; 32(3):337-46. PubMed ID: 18995832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action.
    Chaney M; Grande R; Wigneshweraraj SR; Cannon W; Casaz P; Gallegos MT; Schumacher J; Jones S; Elderkin S; Dago AE; Morett E; Buck M
    Genes Dev; 2001 Sep; 15(17):2282-94. PubMed ID: 11544185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation.
    Schumacher J; Joly N; Rappas M; Zhang X; Buck M
    J Struct Biol; 2006 Oct; 156(1):190-9. PubMed ID: 16531068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA recognition by a σ(54) transcriptional activator from Aquifex aeolicus.
    Vidangos NK; Heideker J; Lyubimov A; Lamers M; Huo Y; Pelton JG; Ton J; Gralla J; Berger J; Wemmer DE
    J Mol Biol; 2014 Oct; 426(21):3553-68. PubMed ID: 25158097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase.
    Schumacher J; Joly N; Rappas M; Bradley D; Wigneshweraraj SR; Zhang X; Buck M
    J Biol Chem; 2007 Mar; 282(13):9825-9833. PubMed ID: 17242399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis.
    Sysoeva TA; Chowdhury S; Guo L; Nixon BT
    Genes Dev; 2013 Nov; 27(22):2500-11. PubMed ID: 24240239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.
    Bordes P; Wigneshweraraj SR; Schumacher J; Zhang X; Chaney M; Buck M
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2278-83. PubMed ID: 12601152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.
    Sharma A; Leach RN; Gell C; Zhang N; Burrows PC; Shepherd DA; Wigneshweraraj S; Smith DA; Zhang X; Buck M; Stockley PG; Tuma R
    Nucleic Acids Res; 2014 Apr; 42(8):5177-90. PubMed ID: 24553251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators.
    Vidangos N; Maris AE; Young A; Hong E; Pelton JG; Batchelor JD; Wemmer DE
    Biopolymers; 2013 Dec; 99(12):1082-96. PubMed ID: 23818155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of DNA recognition by the alternative sigma-factor, sigma54.
    Doucleff M; Pelton JG; Lee PS; Nixon BT; Wemmer DE
    J Mol Biol; 2007 Jun; 369(4):1070-8. PubMed ID: 17481658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and regulatory mechanism of Aquifex aeolicus NtrC4: variability and evolution in bacterial transcriptional regulation.
    Batchelor JD; Doucleff M; Lee CJ; Matsubara K; De Carlo S; Heideker J; Lamers MH; Pelton JG; Wemmer DE
    J Mol Biol; 2008 Dec; 384(5):1058-75. PubMed ID: 18955063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation.
    Burrows PC; Wigneshweraraj SR; Buck M
    J Mol Biol; 2008 Jan; 375(1):43-58. PubMed ID: 18005983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation.
    Dago AE; Wigneshweraraj SR; Buck M; Morett E
    J Biol Chem; 2007 Jan; 282(2):1087-97. PubMed ID: 17090527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of DNA opening revealed in AAA+ transcription complex structures.
    Ye F; Gao F; Liu X; Buck M; Zhang X
    Sci Adv; 2022 Dec; 8(51):eadd3479. PubMed ID: 36542713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.