These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 27733120)
1. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. Su Y; Xu L; Wang Z; Peng Q; Yang Y; Chen Y; Que Y BMC Genomics; 2016 Oct; 17(1):800. PubMed ID: 27733120 [TBL] [Abstract][Full Text] [Related]
2. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590 [TBL] [Abstract][Full Text] [Related]
3. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. Que Y; Su Y; Guo J; Wu Q; Xu L PLoS One; 2014; 9(8):e106476. PubMed ID: 25171065 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane. Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum. Barnabas L; Ashwin NM; Kaverinathan K; Trentin AR; Pivato M; Sundar AR; Malathi P; Viswanathan R; Rosana OB; Neethukrishna K; Carletti P; Arrigoni G; Masi A; Agrawal GK; Rakwal R Proteomics; 2016 Apr; 16(7):1111-22. PubMed ID: 26857420 [TBL] [Abstract][Full Text] [Related]
6. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. Su Y; Zhang Y; Huang N; Liu F; Su W; Xu L; Ahmad W; Wu Q; Guo J; Que Y BMC Genomics; 2017 Apr; 18(1):325. PubMed ID: 28438123 [TBL] [Abstract][Full Text] [Related]
7. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. Liu F; Sun T; Wang L; Su W; Gao S; Su Y; Xu L; Que Y BMC Genomics; 2017 Oct; 18(1):771. PubMed ID: 29020924 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Su YC; Xu LP; Xue BT; Wu QB; Guo JL; Wu LG; Que YX Plant Cell Rep; 2013 Oct; 32(10):1503-19. PubMed ID: 23842883 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of the Resistance Mechanisms in Sugarcane during Singh P; Song QQ; Singh RK; Li HB; Solanki MK; Malviya MK; Verma KK; Yang LT; Li YR Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30699953 [TBL] [Abstract][Full Text] [Related]
10. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Wu Q; Pan YB; Su Y; Zou W; Xu F; Sun T; Grisham MP; Yang S; Xu L; Que Y Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142681 [TBL] [Abstract][Full Text] [Related]
12. Identification and evaluation of PCR reference genes for host and pathogen in sugarcane-Sporisorium scitamineum interaction system. Huang N; Ling H; Liu F; Su Y; Su W; Mao H; Zhang X; Wang L; Chen R; Que Y BMC Genomics; 2018 Jun; 19(1):479. PubMed ID: 29914370 [TBL] [Abstract][Full Text] [Related]
13. Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus Cui G; Huang C; Bi X; Wang Y; Yin K; Zhu L; Jiang Z; Chen B; Deng YZ Microbiol Spectr; 2022 Aug; 10(4):e0057022. PubMed ID: 35862944 [TBL] [Abstract][Full Text] [Related]
14. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. McNeil MD; Bhuiyan SA; Berkman PJ; Croft BJ; Aitken KS PLoS One; 2018; 13(5):e0197840. PubMed ID: 29795614 [TBL] [Abstract][Full Text] [Related]
16. Exploring Potential Surrogate Systems for Studying the Early Steps of the Marrafon-Silva M; Maia T; Calderan-Rodrigues MJ; Strabello M; Oliveira L; Creste S; Melotto M; Monteiro-Vitorello CB Phytopathology; 2024 Jun; 114(6):1295-1304. PubMed ID: 38148162 [TBL] [Abstract][Full Text] [Related]
17. The Role of Sugarcane Catalase Gene Sun T; Liu F; Wang W; Wang L; Wang Z; Li J; Que Y; Xu L; Su Y Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30201878 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional Regulation of SugarCane Response to Wu Q; Zhang C; Xu F; Zang S; Wang D; Sun T; Su Y; Yang S; Ding Y; Que Y J Agric Food Chem; 2024 May; 72(18):10506-10520. PubMed ID: 38651833 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum. Sánchez-Elordi E; Contreras R; de Armas R; Benito MC; Alarcón B; de Oliveira E; Del Mazo C; Díaz-Peña EM; Santiago R; Vicente C; Legaz ME J Plant Physiol; 2018 Jul; 226():103-113. PubMed ID: 29753910 [TBL] [Abstract][Full Text] [Related]
20. A Comprehensive Analysis of Transcriptomics and Metabolomics Revealed Key Pathways Involved in Hu X; Luo Z; Xu C; Wu Z; Wu C; Ebid MHM; Zan F; Zhao L; Liu X; Liu J J Agric Food Chem; 2024 Feb; 72(8):4476-4492. PubMed ID: 38373255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]