These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases? Lopes C; Rego AC Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627 [TBL] [Abstract][Full Text] [Related]
7. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Babaei-Abraki S; Karamali F; Nasr-Esfahani MH Stem Cell Rev Rep; 2022 Jun; 18(5):1789-1808. PubMed ID: 35141862 [TBL] [Abstract][Full Text] [Related]
8. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Liu K; Zhao Q; Liu P; Cao J; Gong J; Wang C; Wang W; Li X; Sun H; Zhang C; Li Y; Jiang M; Zhu S; Sun Q; Jiao J; Hu B; Zhao X; Li W; Chen Q; Zhou Q; Zhao T Autophagy; 2016 Nov; 12(11):2000-2008. PubMed ID: 27575019 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells. Choi HW; Kim JH; Chung MK; Hong YJ; Jang HS; Seo BJ; Jung TH; Kim JS; Chung HM; Byun SJ; Han SG; Seo HG; Do JT Stem Cells Dev; 2015 Jun; 24(11):1366-73. PubMed ID: 25590788 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial Remodeling in Chicken Induced Pluripotent Stem-Like Cells. Choi HW; Kim JS; Choi S; Ju Hong Y; Byun SJ; Seo HG; Do JT Stem Cells Dev; 2016 Mar; 25(6):472-6. PubMed ID: 26795691 [TBL] [Abstract][Full Text] [Related]
11. Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Ivanova JS; Lyublinskaya OG Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681606 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation. Liu W; Long Q; Chen K; Li S; Xiang G; Chen S; Liu X; Li Y; Yang L; Dong D; Jiang C; Feng Z; Qin D; Liu X Biochem Biophys Res Commun; 2013 Feb; 431(4):767-71. PubMed ID: 23333381 [TBL] [Abstract][Full Text] [Related]
13. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. Son MJ; Jeong BR; Kwon Y; Cho YS Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289 [TBL] [Abstract][Full Text] [Related]
14. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Prigione A; Fauler B; Lurz R; Lehrach H; Adjaye J Stem Cells; 2010 Apr; 28(4):721-33. PubMed ID: 20201066 [TBL] [Abstract][Full Text] [Related]
15. MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming. Hao J; Duan FF; Wang Y Curr Opin Genet Dev; 2017 Oct; 46():95-103. PubMed ID: 28753462 [TBL] [Abstract][Full Text] [Related]
16. Pluripotent stem cell energy metabolism: an update. Teslaa T; Teitell MA EMBO J; 2015 Jan; 34(2):138-53. PubMed ID: 25476451 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria and the dynamic control of stem cell homeostasis. Lisowski P; Kannan P; Mlody B; Prigione A EMBO Rep; 2018 May; 19(5):. PubMed ID: 29661859 [TBL] [Abstract][Full Text] [Related]
18. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Wanet A; Arnould T; Najimi M; Renard P Stem Cells Dev; 2015 Sep; 24(17):1957-71. PubMed ID: 26134242 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial Heterogeneity in Stem Cells. Naik PP; Praharaj PP; Bhol CS; Panigrahi DP; Mahapatra KK; Patra S; Saha S; Bhutia SK Adv Exp Med Biol; 2019; 1123():179-194. PubMed ID: 31016601 [TBL] [Abstract][Full Text] [Related]
20. SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells. Liu TM; Shyh-Chang N Nat Cell Biol; 2017 Apr; 19(5):412-414. PubMed ID: 28446816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]