These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27733598)

  • 1. Overlap of movement planning and movement execution reduces reaction time.
    Orban de Xivry JJ; Legrain V; Lefèvre P
    J Neurophysiol; 2017 Jan; 117(1):117-122. PubMed ID: 27733598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling.
    Fautrelle L; Barbieri G; Ballay Y; Bonnetblanc F
    Neuroscience; 2011 Oct; 194():124-35. PubMed ID: 21854835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in the motor planning of a lower leg target matching task.
    Davies BL; Gehringer JE; Kurz MJ
    Hum Mov Sci; 2015 Dec; 44():299-306. PubMed ID: 26519904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context influences on the preparation and execution of reaching movements.
    Mirabella G; Pani P; Ferraina S
    Cogn Neuropsychol; 2008; 25(7-8):996-1010. PubMed ID: 19378414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A motor planning stage represents the shape of upcoming movement trajectories.
    Wong AL; Goldsmith J; Krakauer JW
    J Neurophysiol; 2016 Aug; 116(2):296-305. PubMed ID: 27098032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An independent race model involving an abort and re-plan strategy explains reach redirecting movements during planning and execution.
    Venkataramani P; Gopal A; Murthy A
    Eur J Neurosci; 2018 Mar; 47(5):460-478. PubMed ID: 29359401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of execution noise in movement variability.
    van Beers RJ; Haggard P; Wolpert DM
    J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online modification of goal-directed control in human reaching movements.
    De Comite A; Crevecoeur F; Lefèvre P
    J Neurophysiol; 2021 May; 125(5):1883-1898. PubMed ID: 33852821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target switching in curved human arm movements is predicted by changing a single control parameter.
    Hoffmann H
    Exp Brain Res; 2011 Jan; 208(1):73-87. PubMed ID: 21046367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction time and movement duration influence on end point accuracy in a fast reaching task.
    Skurvidas A; Mickevichiene D; Cesnavichiene V; Gutnik B; Nash D
    Fiziol Cheloveka; 2012; 38(3):73-80. PubMed ID: 22830246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Code of Motor Planning and Execution during Goal-Directed Movements in Crows.
    Rinnert P; Nieder A
    J Neurosci; 2021 May; 41(18):4060-4072. PubMed ID: 33608384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily modulation of the speed-accuracy trade-off.
    Gueugneau N; Pozzo T; Darlot C; Papaxanthis C
    Neuroscience; 2017 Jul; 356():142-150. PubMed ID: 28499976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between the execution, perception, and imagination of action.
    Wong L; Manson GA; Tremblay L; Welsh TN
    Behav Brain Res; 2013 Nov; 257():242-52. PubMed ID: 24100120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Two sides of the same coin": constant motor learning speeds up, whereas variable motor learning stabilizes, speed-accuracy movements.
    Skurvydas A; Satas A; Valanciene D; Mamkus G; Mickeviciene D; Majauskiene D; Brazaitis M
    Eur J Appl Physiol; 2020 May; 120(5):1027-1039. PubMed ID: 32172292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advance planning in sequential pick-and-place tasks.
    Hesse C; Deubel H
    J Neurophysiol; 2010 Jul; 104(1):508-16. PubMed ID: 20457862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye movements show similar adaptations in temporal coordination to movement planning conditions in both people with and without cerebral palsy.
    Payne AR; Plimmer B; McDaid A; Davies TC
    Exp Brain Res; 2017 May; 235(5):1375-1385. PubMed ID: 28220201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor preparation in a memorised delay task.
    Jordan K; Hyland BI; Wickens JR; Anson JG
    Exp Brain Res; 2005 Sep; 166(1):102-8. PubMed ID: 16032407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The StartReact effect in tasks requiring end-point accuracy.
    Castellote JM; Valls-Solé J
    Clin Neurophysiol; 2015 Oct; 126(10):1879-85. PubMed ID: 25754260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.