BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 27733610)

  • 1. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function.
    Kim KX; Rutherford MA
    J Neurosci; 2016 Feb; 36(7):2111-8. PubMed ID: 26888923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse.
    Grant L; Yi E; Glowatzki E
    J Neurosci; 2010 Mar; 30(12):4210-20. PubMed ID: 20335456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea.
    Oak MH; Yi E
    Arch Pharm Res; 2014 Jul; 37(7):821-33. PubMed ID: 24925343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear aging disrupts the correlation between spontaneous rate- and sound-level coding in auditory nerve fibers.
    Heeringa AN; Teske F; Ashida G; Köppl C
    J Neurophysiol; 2023 Sep; 130(3):736-750. PubMed ID: 37584075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.
    Ye Z; Goutman JD; Pyott SJ; Glowatzki E
    J Physiol; 2017 Jun; 595(11):3483-3495. PubMed ID: 28211069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy.
    Suthakar K; Liberman MC
    J Neurophysiol; 2021 Dec; 126(6):2027-2038. PubMed ID: 34788179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of phase information at low sound frequency in nucleus magnocellularis of the chicken.
    Fukui I; Sato T; Ohmori H
    J Neurophysiol; 2006 Aug; 96(2):633-41. PubMed ID: 16687616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea.
    Yi E; Roux I; Glowatzki E
    J Neurophysiol; 2010 May; 103(5):2532-43. PubMed ID: 20220080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites.
    Bruce IC; Erfani Y; Zilany MSA
    Hear Res; 2018 Mar; 360():40-54. PubMed ID: 29395616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound coding in the auditory nerve of gerbils.
    Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J
    Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery.
    Oliver D; Taberner AM; Thurm H; Sausbier M; Arntz C; Ruth P; Fakler B; Liberman MC
    J Neurosci; 2006 Jun; 26(23):6181-9. PubMed ID: 16763026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Interplay Between Spike-Time and Spike-Rate Modes in the Auditory Nerve Encodes Tone-In-Noise Threshold.
    Huet A; Desmadryl G; Justal T; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2018 Jun; 38(25):5727-5738. PubMed ID: 29793977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.