BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

965 related articles for article (PubMed ID: 27733616)

  • 1. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal Ripple Coordinates Retrosplenial Inhibitory Neurons during Slow-Wave Sleep.
    Opalka AN; Huang WQ; Liu J; Liang H; Wang DV
    Cell Rep; 2020 Jan; 30(2):432-441.e3. PubMed ID: 31940487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness.
    Remondes M; Wilson MA
    Cell Rep; 2015 Nov; 13(7):1327-1335. PubMed ID: 26549454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfiguration of the cortical-hippocampal interaction may compensate for Sharp-Wave Ripple deficits in APP/PS1 mice and support spatial memory formation.
    Jura B; Młoźniak D; Goszczyńska H; Blinowska K; Biendon N; Macrez N; Meyrand P; Bem T
    PLoS One; 2020; 15(12):e0243767. PubMed ID: 33382724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability.
    Wiegand JP; Gray DT; Schimanski LA; Lipa P; Barnes CA; Cowen SL
    J Neurosci; 2016 May; 36(20):5650-60. PubMed ID: 27194342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
    Yamamoto J; Tonegawa S
    Neuron; 2017 Sep; 96(1):217-227.e4. PubMed ID: 28957670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.
    Haggerty DC; Ji D
    J Neurophysiol; 2014 Oct; 112(7):1763-74. PubMed ID: 25008411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation.
    Wang DV; Yau HJ; Broker CJ; Tsou JH; Bonci A; Ikemoto S
    Nat Neurosci; 2015 May; 18(5):728-35. PubMed ID: 25867120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Buzsáki G; Berényi A
    Neuron; 2016 Sep; 91(6):1342-1355. PubMed ID: 27593179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep.
    Siapas AG; Wilson MA
    Neuron; 1998 Nov; 21(5):1123-8. PubMed ID: 9856467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep.
    Sanda P; Malerba P; Jiang X; Krishnan GP; Gonzalez-Martinez J; Halgren E; Bazhenov M
    Cereb Cortex; 2021 Jan; 31(1):324-340. PubMed ID: 32995860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice.
    Karimi Abadchi J; Rezaei Z; Knöpfel T; McNaughton BL; Mohajerani MH
    Elife; 2023 Jan; 12():. PubMed ID: 36645126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monosynaptic Hippocampal-Prefrontal Projections Contribute to Spatial Memory Consolidation in Mice.
    Binder S; Mölle M; Lippert M; Bruder R; Aksamaz S; Ohl F; Wiegert JS; Marshall L
    J Neurosci; 2019 Aug; 39(35):6978-6991. PubMed ID: 31285301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
    Jadhav SP; Rothschild G; Roumis DK; Frank LM
    Neuron; 2016 Apr; 90(1):113-27. PubMed ID: 26971950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.
    Latchoumane CV; Ngo HV; Born J; Shin HS
    Neuron; 2017 Jul; 95(2):424-435.e6. PubMed ID: 28689981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors.
    Ma X; Zhang Y; Wang L; Li N; Barkai E; Zhang X; Lin L; Xu J
    J Neurosci; 2020 Apr; 40(18):3591-3603. PubMed ID: 32265261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.