BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 27733821)

  • 1. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.
    Yu Q; Wu L; Bridwell DA; Erhardt EB; Du Y; He H; Chen J; Liu P; Sui J; Pearlson G; Calhoun VD
    Front Hum Neurosci; 2016; 10():476. PubMed ID: 27733821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Brain Connectivity in Resting-State FMRI Using Spectral ICA and Graph Approach: Application to Healthy Controls and Multiple Sclerosis.
    Riazi AH; Rabbani H; Kafieh R
    Diagnostics (Basel); 2022 Sep; 12(9):. PubMed ID: 36140663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia.
    Yu Q; Erhardt EB; Sui J; Du Y; He H; Hjelm D; Cetin MS; Rachakonda S; Miller RL; Pearlson G; Calhoun VD
    Neuroimage; 2015 Feb; 107():345-355. PubMed ID: 25514514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG characteristics in "eyes-open" versus "eyes-closed" conditions: Small-world network architecture in healthy aging and age-related brain degeneration.
    Miraglia F; Vecchio F; Bramanti P; Rossini PM
    Clin Neurophysiol; 2016 Feb; 127(2):1261-1268. PubMed ID: 26603651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph.
    Bharath RD; Panda R; Reddam VR; Bhaskar MV; Gohel S; Bhardwaj S; Prajapati A; Pal PK
    Front Hum Neurosci; 2017; 11():443. PubMed ID: 28928648
    [No Abstract]   [Full Text] [Related]  

  • 6. fMRI BOLD Correlates of EEG Independent Components: Spatial Correspondence With the Default Mode Network.
    Prestel M; Steinfath TP; Tremmel M; Stark R; Ott U
    Front Hum Neurosci; 2018; 12():478. PubMed ID: 30542275
    [No Abstract]   [Full Text] [Related]  

  • 7. Preservation of EEG spectral power features during simultaneous EEG-fMRI.
    Gallego-Rudolf J; Corsi-Cabrera M; Concha L; Ricardo-Garcell J; Pasaye-Alcaraz E
    Front Neurosci; 2022; 16():951321. PubMed ID: 36620439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis.
    Tan B; Kong X; Yang P; Jin Z; Li L
    Comput Math Methods Med; 2013; 2013():976365. PubMed ID: 23690886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG Signatures of Dynamic Functional Network Connectivity States.
    Allen EA; Damaraju E; Eichele T; Wu L; Calhoun VD
    Brain Topogr; 2018 Jan; 31(1):101-116. PubMed ID: 28229308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG default mode network in the human brain: spectral regional field powers.
    Chen AC; Feng W; Zhao H; Yin Y; Wang P
    Neuroimage; 2008 Jun; 41(2):561-74. PubMed ID: 18403217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic changes of ICA-derived EEG functional connectivity in the resting state.
    Chen JL; Ros T; Gruzelier JH
    Hum Brain Mapp; 2013 Apr; 34(4):852-68. PubMed ID: 22344782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs).
    Dimitriadis SI; Salis C; Tarnanas I; Linden DE
    Front Neuroinform; 2017; 11():28. PubMed ID: 28491032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-fMRI reciprocal functional neuroimaging.
    Yang L; Liu Z; He B
    Clin Neurophysiol; 2010 Aug; 121(8):1240-50. PubMed ID: 20378397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.
    Yu Q; Du Y; Chen J; He H; Sui J; Pearlson G; Calhoun VD
    J Neurosci Methods; 2017 Nov; 291():61-68. PubMed ID: 28807861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Properties of Human Default Mode Network in Eyes-Closed and Eyes-Open.
    Liu X; Wu X; Zhong M; Huang H; Weng Y; Niu M; Zhao L; Huang R
    Brain Topogr; 2020 Nov; 33(6):720-732. PubMed ID: 32803623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifractal Dynamic Functional Connectivity in the Resting-State Brain.
    Racz FS; Stylianou O; Mukli P; Eke A
    Front Physiol; 2018; 9():1704. PubMed ID: 30555345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graph-theoretical approach in brain functional networks. Possible implications in EEG studies.
    Fallani Fde V; Costa Lda F; Rodriguez FA; Astolfi L; Vecchiato G; Toppi J; Borghini G; Cincotti F; Mattia D; Salinari S; Isabella R; Babiloni F
    Nonlinear Biomed Phys; 2010 Jun; 4 Suppl 1(Suppl 1):S8. PubMed ID: 20522269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition.
    Wirsich J; Amico E; Giraud AL; Goñi J; Sadaghiani S
    Netw Neurosci; 2020; 4(3):658-677. PubMed ID: 32885120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic functional connectivity optimization of frequency EEG microstates enables attention LSTM framework to classify distinct temporal cortical communications of different cognitive tasks.
    Agrawal S; Chinnadurai V; Sharma R
    Brain Inform; 2022 Oct; 9(1):25. PubMed ID: 36219346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open eyes and closed eyes elicit different temporal properties of brain functional networks.
    Weng Y; Liu X; Hu H; Huang H; Zheng S; Chen Q; Song J; Cao B; Wang J; Wang S; Huang R
    Neuroimage; 2020 Nov; 222():117230. PubMed ID: 32771616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.