These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27733891)

  • 1. An automated system for high-throughput generation and optimization of microdroplets.
    Wang Z; Samanipour R; Gamaleldin M; Sakthivel K; Kim K
    Biomicrofluidics; 2016 Sep; 10(5):054110. PubMed ID: 27733891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
    Filatov NA; Evstrapov AA; Bukatin AS
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect.
    Shams Khorrami A; Rezai P
    Biomicrofluidics; 2018 May; 12(3):034113. PubMed ID: 29983838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets.
    Gardner K; Uddin MM; Tran L; Pham T; Vanapalli S; Li W
    Lab Chip; 2022 Oct; 22(21):4067-4080. PubMed ID: 36214344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
    Jiang T; Wu Y
    Electrophoresis; 2022 Feb; 43(4):601-608. PubMed ID: 34747509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
    Ryu J; Kim J; Han KH
    Lab Chip; 2023 Mar; 23(7):1896-1904. PubMed ID: 36877075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic video recognition for cell-encapsulating microfluidic droplets.
    Mao Y; Zhou X; Hu W; Yang W; Cheng Z
    Analyst; 2024 Mar; 149(7):2147-2160. PubMed ID: 38441128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based closed-loop feedback for highly mono-dispersed microdroplet production.
    Crawford DF; Smith CA; Whyte G
    Sci Rep; 2017 Sep; 7(1):10545. PubMed ID: 28874820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Droplet Generation with In-Series Droplet T-Junctions Induced by Gravity-Induced Flow.
    Bajgiran KR; Cordova AS; Elkhanoufi R; Dorman JA; Melvin AT
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Size-controlled Poly (ethylene Glycol) Diacrylate Droplets via Semi-3-Dimensional Flow Focusing Microfluidic Devices.
    Wu Y; Qian X; Mi S; Zhang M; Sun S; Wang X
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30035768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system.
    Mottaghi S; Nazari M; Fattahi SM; Nazari M; Babamohammadi S
    Biomed Microdevices; 2020 Sep; 22(3):61. PubMed ID: 32876861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation.
    Mei L; Jin M; Xie S; Yan Z; Wang X; Zhou G; van den Berg A; Shui L
    Lab Chip; 2018 Sep; 18(18):2806-2815. PubMed ID: 30112532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-Based Feedback of Multi-Component Microdroplets for Ultra-Monodispersed Library Preparation.
    Cantwell C; McGrath JS; Smith CA; Whyte G
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.