These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27733891)

  • 21. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance tuning of microfluidic flow-focusing droplet generators.
    Lashkaripour A; Rodriguez C; Ortiz L; Densmore D
    Lab Chip; 2019 Mar; 19(6):1041-1053. PubMed ID: 30762047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets.
    Miller E; Rotea M; Rothstein JP
    Lab Chip; 2010 May; 10(10):1293-301. PubMed ID: 20445883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Droplet Consistency Monitoring and Cell Detection via Laser Excitation.
    Tkaczyk AH; Tkaczyk ER; Norris TB; Takayama S
    J Mech Med Biol; 2011 Mar; 11(1):1-14. PubMed ID: 29755161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform.
    Ferreira J; Castro F
    Methods Mol Biol; 2023; 2652():347-359. PubMed ID: 37093486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform.
    Neun S; van Vliet L; Hollfelder F; Gielen F
    Anal Chem; 2022 Dec; 94(48):16701-16710. PubMed ID: 36417687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hand-held, power-free microfluidic device for monodisperse droplet generation.
    Chen IJ; Wu T; Hu S
    MethodsX; 2018; 5():984-990. PubMed ID: 30197867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Open-source tool for real-time and automated analysis of droplet-based microfluidic.
    Neto JP; Mota A; Lopes G; Coelho BJ; Frazão J; Moura AT; Oliveira B; Sieira B; Fernandes J; Fortunato E; Martins R; Igreja R; Baptista PV; Águas H
    Lab Chip; 2023 Jul; 23(14):3238-3244. PubMed ID: 37341773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-automated on-demand control of individual droplets with a sample application to a drug screening assay.
    Hébert M; Courtney M; Ren CL
    Lab Chip; 2019 Apr; 19(8):1490-1501. PubMed ID: 30912559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay.
    Li HT; Wang HF; Wang Y; Pan JZ; Fang Q
    Talanta; 2020 Sep; 217():120997. PubMed ID: 32498829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential storage and release of microdroplets.
    Toprakcioglu Z; Knowles TPJ
    Microsyst Nanoeng; 2021; 7():76. PubMed ID: 34631144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.
    Bardin D; Kendall MR; Dayton PA; Lee AP
    Biomicrofluidics; 2013; 7(3):34112. PubMed ID: 24404032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printing in microfluidics: experimental optimization of droplet size and generation time through flow focusing, phase, and geometry variation.
    Britel A; Tomagra G; Aprà P; Varzi V; Sturari S; Amine NH; Olivero P; Picollo F
    RSC Adv; 2024 Feb; 14(11):7770-7778. PubMed ID: 38444974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator.
    Yao J; Lin F; Kim HS; Park J
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31771159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control.
    Ibrahim AM; Padovani JI; Howe RT; Anis YH
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pico-washing: simultaneous liquid addition and removal for continuous-flow washing of microdroplets.
    Siedlik MJ; Issadore D
    Microsyst Nanoeng; 2022; 8():46. PubMed ID: 35498338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Machine Learning and Computer Vision Approach to Rapidly Optimize Multiscale Droplet Generation.
    Siemenn AE; Shaulsky E; Beveridge M; Buonassisi T; Hashmi SM; Drori I
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4668-4679. PubMed ID: 35026110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.