These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27734048)

  • 1. New insights into the electrochemical detection application of p-p junction foam: the effects of the interfacial potential barrier.
    Ding L; Zhao M; Fan S; Li H; Ma Y; Liang J; Chen S
    Analyst; 2016 Nov; 141(24):6515-6520. PubMed ID: 27734048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triggering interface potential barrier: A controllable tuning mechanism for electrochemical detection.
    Ding L; Zhao M; Ma Y; Fan S; Wen Z; Huang J; Liang J; Chen S
    Biosens Bioelectron; 2016 Nov; 85():869-875. PubMed ID: 27295574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial potential barrier driven electrochemical detection of Cr
    He Y; Zhao M; Yu M; Zhuang Y; Cheng F; Chen S
    Anal Chim Acta; 2018 Oct; 1029():8-14. PubMed ID: 29907295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case.
    Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M
    Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.
    González-Fernández E; Avlonitis N; Murray AF; Mount AR; Bradley M
    Biosens Bioelectron; 2016 Oct; 84():82-8. PubMed ID: 26684247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection.
    Li P; Ge B; Ou LM; Yao Z; Yu HZ
    Sensors (Basel); 2015 Aug; 15(8):20543-56. PubMed ID: 26307986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy.
    Lin C; Zheng H; Huang Y; Chen Z; Luo F; Wang J; Guo L; Qiu B; Lin Z; Yang H
    Biosens Bioelectron; 2018 Oct; 117():474-479. PubMed ID: 29982116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier.
    Abnous K; Danesh NM; Ramezani M; Alibolandi M; Taghdisi SM
    Biosens Bioelectron; 2018 Nov; 119():204-208. PubMed ID: 30138863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode.
    Özcan A; İlkbaş S; Atılır Özcan A
    Talanta; 2017 Apr; 165():489-495. PubMed ID: 28153287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.
    Kim E; Gordonov T; Bentley WE; Payne GF
    Anal Chem; 2013 Feb; 85(4):2102-8. PubMed ID: 23311878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction.
    Wu H; Li M; Wang Z; Yu H; Han J; Xie G; Chen S
    Anal Chim Acta; 2019 Feb; 1049():74-81. PubMed ID: 30612659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing.
    Dong X; Wang X; Wang L; Song H; Zhang H; Huang W; Chen P
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3129-33. PubMed ID: 22574906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor.
    Yu YY; Wang JX; Si RW; Yang Y; Zhang CL; Yong YC
    Anal Chim Acta; 2017 Sep; 985():148-154. PubMed ID: 28864185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine.
    Farjami E; Campos R; Nielsen JS; Gothelf KV; Kjems J; Ferapontova EE
    Anal Chem; 2013 Jan; 85(1):121-8. PubMed ID: 23210972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical OFF-ON ratiometric chemodosimeters for the selective and rapid detection of fluoride.
    Mani V; Li WY; Gu JA; Lin CM; Huang ST
    Talanta; 2015 Jan; 131():121-6. PubMed ID: 25281082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor.
    Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH
    Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing.
    Zhang H; Liu S
    J Colloid Interface Sci; 2017 Jan; 485():159-166. PubMed ID: 27662028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.