BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27734100)

  • 1. Meagre effects of disuse on the human fibula are not explained by bone size or geometry.
    Ireland A; Capozza RF; Cointry GR; Nocciolino L; Ferretti JL; Rittweger J
    Osteoporos Int; 2017 Feb; 28(2):633-641. PubMed ID: 27734100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.
    Coupaud S; McLean AN; Purcell M; Fraser MH; Allan DB
    Bone; 2015 May; 74():69-75. PubMed ID: 25596521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibula response to disuse: a longitudinal analysis in people with spinal cord injury.
    Abdelrahman S; Purcell M; Rantalainen T; Coupaud S; Ireland A
    Arch Osteoporos; 2022 Mar; 17(1):51. PubMed ID: 35305185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific bone mineral density distribution in the tibia of individuals with chronic spinal cord injury, derived from multi-slice peripheral Quantitative Computed Tomography (pQCT) - A cross-sectional study.
    Coupaud S; Gislason MK; Purcell M; Sasagawa K; Tanner KE
    Bone; 2017 Apr; 97():29-37. PubMed ID: 28034635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional cortical and trabecular bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Rehabil Res Dev; 2012; 49(9):1365-76. PubMed ID: 23408218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time.
    Haider IT; Lobos SM; Simonian N; Schnitzer TJ; Edwards WB
    Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.
    Edwards WB; Schnitzer TJ; Troy KL
    Osteoporos Int; 2014 Mar; 25(3):1005-15. PubMed ID: 24190426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: a pQCT study of female athletes representing different exercise loading types.
    Rantalainen T; Nikander R; Heinonen A; Suominen H; Sievänen H
    Calcif Tissue Int; 2010 Jun; 86(6):447-54. PubMed ID: 20383493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans.
    Rittweger J; Goosey-Tolfrey VL; Cointry G; Ferretti JL
    Bone; 2010 Sep; 47(3):511-8. PubMed ID: 20561989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural differences in cortical shell properties between upper and lower human fibula as described by pQCT serial scans. A biomechanical interpretation.
    Cointry GR; Nocciolino L; Ireland A; Hall NM; Kriechbaumer A; Ferretti JL; Rittweger J; Capozza RF
    Bone; 2016 Sep; 90():185-94. PubMed ID: 27302664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the structural and material properties of the tibia in patients with spinal cord injury.
    McCarthy ID; Bloomer Z; Gall A; Keen R; Ferguson-Pell M
    Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of bone mineral density and morphology using pQCT in children after spinal cord injury.
    Biggin A; Briody JN; Ramjan KA; Middleton A; Waugh MC; Munns CF
    Dev Neurorehabil; 2013 Dec; 16(6):391-7. PubMed ID: 23477616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis.
    Kontulainen SA; Johnston JD; Liu D; Leung C; Oxland TR; McKay HA
    J Musculoskelet Neuronal Interact; 2008; 8(4):401-9. PubMed ID: 19147978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT).
    Frotzler A; Berger M; Knecht H; Eser P
    Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: a finite element study.
    Gislason MK; Coupaud S; Sasagawa K; Tanabe Y; Purcell M; Allan DB; Tanner KE
    Proc Inst Mech Eng H; 2014 Feb; 228(2):165-74. PubMed ID: 24503510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography.
    Leonard MB; Shults J; Elliott DM; Stallings VA; Zemel BS
    Bone; 2004 Jun; 34(6):1044-52. PubMed ID: 15193552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia.
    Coupaud S; McLean AN; Allan DB
    Skeletal Radiol; 2009 Oct; 38(10):989-95. PubMed ID: 19277646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury.
    Modlesky CM; Majumdar S; Narasimhan A; Dudley GA
    J Bone Miner Res; 2004 Jan; 19(1):48-55. PubMed ID: 14753736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chronic stroke impairments on bone strength index of the tibial distal epiphysis and diaphysis.
    Yang FZ; Pang MY
    Osteoporos Int; 2015 Feb; 26(2):469-80. PubMed ID: 25189426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.