These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27734179)

  • 1. Quantifying protein dynamics in the ps-ns time regime by NMR relaxation.
    Hernández G; LeMaster DM
    J Biomol NMR; 2016 Nov; 66(3):163-174. PubMed ID: 27734179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation.
    Anderson JS; LeMaster DM
    Biophys Chem; 2012 Jul; 168-169():28-39. PubMed ID: 22750561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements.
    Yao L; Grishaev A; Cornilescu G; Bax A
    J Am Chem Soc; 2010 Mar; 132(12):4295-309. PubMed ID: 20199098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data.
    Anderson JS; Hernández G; LeMaster DM
    J Chem Theory Comput; 2017 Jul; 13(7):3276-3289. PubMed ID: 28541675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of conformational transitions in the active site and 80's loop in the FK506-binding protein FKBP12.
    Mustafi SM; Brecher M; Zhang J; Li H; Lemaster DM; Hernández G
    Biochem J; 2014 Mar; 458(3):525-36. PubMed ID: 24405377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation.
    Lee AL; Wand AJ
    J Biomol NMR; 1999 Feb; 13(2):101-12. PubMed ID: 10070752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G.
    Hall JB; Fushman D
    J Biomol NMR; 2003 Nov; 27(3):261-75. PubMed ID: 12975584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.
    Ying J; Grishaev A; Bax A
    Magn Reson Chem; 2006 Mar; 44(3):302-10. PubMed ID: 16477676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional dynamics of human FKBP12 revealed by methyl 13C rotating frame relaxation dispersion NMR spectroscopy.
    Brath U; Akke M; Yang D; Kay LE; Mulder FA
    J Am Chem Soc; 2006 May; 128(17):5718-27. PubMed ID: 16637639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses of the backbone and side-chain conformational dynamics in FKBP12 upon binding the transition-state analog FK506: implications for transition-state stabilization and target protein recognition.
    Brath U; Akke M
    J Mol Biol; 2009 Mar; 387(1):233-44. PubMed ID: 19361439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy.
    Yao L; Grishaev A; Cornilescu G; Bax A
    J Am Chem Soc; 2010 Aug; 132(31):10866-75. PubMed ID: 20681720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics.
    Ishima R
    Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational averaging of chemical shift anisotropies in model peptides.
    Tang S; Case DA
    J Biomol NMR; 2007 Jul; 38(3):255-66. PubMed ID: 17562185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.