BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27734242)

  • 1. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease.
    Zhang X; Tang S; Liu Q; Cheke RA; Zhu H
    Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations.
    Zhang X; Tang S; Cheke RA
    Math Biosci; 2015 Nov; 269():164-77. PubMed ID: 26407645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population.
    Li Y; Liu X
    J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model.
    Zheng B; Chen LH; Sun QW
    Math Biosci Eng; 2019 Jun; 16(5):5531-5550. PubMed ID: 31499724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control.
    Zhang X; Liu Q; Zhu H
    J Math Biol; 2020 Jul; 81(1):243-276. PubMed ID: 32458175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model.
    Strugarek M; Vauchelet N; Zubelli JP
    Math Biosci Eng; 2018 Aug; 15(4):961-991. PubMed ID: 30380317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio.
    Huang MG; Tang MX; Yu JS; Zheng B
    Math Biosci Eng; 2019 May; 16(5):4741-4757. PubMed ID: 31499687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the transmission dynamics of dengue in the presence of Wolbachia.
    Ndii MZ; Hickson RI; Allingham D; Mercer GN
    Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations.
    Campo-Duarte DE; Vasilieva O; Cardona-Salgado D; Svinin M
    J Math Biol; 2018 Jun; 76(7):1907-1950. PubMed ID: 29429122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.
    Bliman PA; Aronna MS; Coelho FC; da Silva MAHB
    J Math Biol; 2018 Apr; 76(5):1269-1300. PubMed ID: 28856446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission.
    Zheng B; Tang M; Yu J; Qiu J
    J Math Biol; 2018 Jan; 76(1-2):235-263. PubMed ID: 28573466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.
    Ritchie SA; van den Hurk AF; Smout MJ; Staunton KM; Hoffmann AA
    Trends Parasitol; 2018 Mar; 34(3):217-226. PubMed ID: 29396201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.
    Turelli M; Barton NH
    Theor Popul Biol; 2017 Jun; 115():45-60. PubMed ID: 28411063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A metapopulation approach to identify targets for Wolbachia-based dengue control.
    Reyna-Lara A; Soriano-Paños D; Arias-Castro JH; Martínez HJ; Gómez-Gardeñes J
    Chaos; 2022 Apr; 32(4):041105. PubMed ID: 35489839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spread of Wolbachia through mosquito populations.
    Jiggins FM
    PLoS Biol; 2017 Jun; 15(6):e2002780. PubMed ID: 28570608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-sex mosquito model for the persistence of Wolbachia.
    Xue L; Manore CA; Thongsripong P; Hyman JM
    J Biol Dyn; 2017 Mar; 11(sup1):216-237. PubMed ID: 27628851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations.
    Huang M; Luo J; Hu L; Zheng B; Yu J
    J Theor Biol; 2018 Mar; 440():1-11. PubMed ID: 29248525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the use of Wolbachia to control dengue fever transmission.
    Hughes H; Britton NF
    Bull Math Biol; 2013 May; 75(5):796-818. PubMed ID: 23535905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.