These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27734242)

  • 1. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease.
    Zhang X; Tang S; Liu Q; Cheke RA; Zhu H
    Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations.
    Zhang X; Tang S; Cheke RA
    Math Biosci; 2015 Nov; 269():164-77. PubMed ID: 26407645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population.
    Li Y; Liu X
    J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model.
    Zheng B; Chen LH; Sun QW
    Math Biosci Eng; 2019 Jun; 16(5):5531-5550. PubMed ID: 31499724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control.
    Zhang X; Liu Q; Zhu H
    J Math Biol; 2020 Jul; 81(1):243-276. PubMed ID: 32458175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model.
    Strugarek M; Vauchelet N; Zubelli JP
    Math Biosci Eng; 2018 Aug; 15(4):961-991. PubMed ID: 30380317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio.
    Huang MG; Tang MX; Yu JS; Zheng B
    Math Biosci Eng; 2019 May; 16(5):4741-4757. PubMed ID: 31499687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the transmission dynamics of dengue in the presence of Wolbachia.
    Ndii MZ; Hickson RI; Allingham D; Mercer GN
    Math Biosci; 2015 Apr; 262():157-66. PubMed ID: 25645184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations.
    Campo-Duarte DE; Vasilieva O; Cardona-Salgado D; Svinin M
    J Math Biol; 2018 Jun; 76(7):1907-1950. PubMed ID: 29429122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.
    Bliman PA; Aronna MS; Coelho FC; da Silva MAHB
    J Math Biol; 2018 Apr; 76(5):1269-1300. PubMed ID: 28856446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission.
    Zheng B; Tang M; Yu J; Qiu J
    J Math Biol; 2018 Jan; 76(1-2):235-263. PubMed ID: 28573466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mission Accomplished? We Need a Guide to the 'Post Release' World of Wolbachia for Aedes-borne Disease Control.
    Ritchie SA; van den Hurk AF; Smout MJ; Staunton KM; Hoffmann AA
    Trends Parasitol; 2018 Mar; 34(3):217-226. PubMed ID: 29396201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.
    Turelli M; Barton NH
    Theor Popul Biol; 2017 Jun; 115():45-60. PubMed ID: 28411063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A metapopulation approach to identify targets for Wolbachia-based dengue control.
    Reyna-Lara A; Soriano-Paños D; Arias-Castro JH; Martínez HJ; Gómez-Gardeñes J
    Chaos; 2022 Apr; 32(4):041105. PubMed ID: 35489839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spread of Wolbachia through mosquito populations.
    Jiggins FM
    PLoS Biol; 2017 Jun; 15(6):e2002780. PubMed ID: 28570608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-sex mosquito model for the persistence of Wolbachia.
    Xue L; Manore CA; Thongsripong P; Hyman JM
    J Biol Dyn; 2017 Mar; 11(sup1):216-237. PubMed ID: 27628851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations.
    Huang M; Luo J; Hu L; Zheng B; Yu J
    J Theor Biol; 2018 Mar; 440():1-11. PubMed ID: 29248525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the use of Wolbachia to control dengue fever transmission.
    Hughes H; Britton NF
    Bull Math Biol; 2013 May; 75(5):796-818. PubMed ID: 23535905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.