BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27734513)

  • 1. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.
    Kakuszi A; Solymosi K; Böddi B
    Physiol Plant; 2017 Apr; 159(4):483-491. PubMed ID: 27734513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light piping activates chlorophyll biosynthesis in the under-soil hypocotyl section of bean seedlings.
    Kakuszi A; Böddi B
    J Photochem Photobiol B; 2014 Nov; 140():1-7. PubMed ID: 25063979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).
    Kakuszi A; Sárvári É; Solti Á; Czégény G; Hideg É; Hunyadi-Gulyás É; Bóka K; Böddi B
    J Photochem Photobiol B; 2016 Aug; 161():422-9. PubMed ID: 27318297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B.
    Franck F; Sperling U; Frick G; Pochert B; van Cleve B; Apel K; Armstrong GA
    Plant Physiol; 2000 Dec; 124(4):1678-96. PubMed ID: 11115885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds.
    Solymosi K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1075-85. PubMed ID: 16651257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light- and cold-stress effects on the greening process in epicotyls and young stems of red oak (Quercus rubra) seedlings.
    Skribanek A; Böddi B
    Tree Physiol; 2001 May; 21(8):549-54. PubMed ID: 11359713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-dependent transport of the NADPH:protochlorophyllide oxidoreductase into isolated plastids.
    Reinbothe S; Runge S; Reinbothe C; van Cleve B; Apel K
    Plant Cell; 1995 Feb; 7(2):161-72. PubMed ID: 7756827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea.
    Seyedi M; Timko MP; Sundqvist C
    Plant Cell Physiol; 2001 Sep; 42(9):931-41. PubMed ID: 11577187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and temperature regulation of greening in dark-grown ginkgo (Ginkgo biloba).
    Skribanek A; Solymosi K; Hideg E; Böddi B
    Physiol Plant; 2008 Dec; 134(4):649-59. PubMed ID: 19000199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum).
    Solymosi K; Bóka K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1087-96. PubMed ID: 16651258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation.
    Abdelkader AF; Aronsson H; Solymosi K; Böddi B; Sundqvist C
    J Exp Bot; 2007; 58(10):2553-64. PubMed ID: 17562691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves.
    Schoefs B; Bertrand M; Franck F
    Photochem Photobiol; 2000 Jul; 72(1):85-93. PubMed ID: 10911732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark.
    Lancer HA; Cohen CE; Schiff JA
    Plant Physiol; 1976 Mar; 57(3):369-74. PubMed ID: 16659485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early and late plastid development in response to chill stress and heat stress in wheat seedlings.
    Mohanty S; Tripathy BC
    Protoplasma; 2011 Oct; 248(4):725-36. PubMed ID: 21063735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered etioplast development in phytochrome chromophore-deficient mutants.
    Terry MJ; Ryberg M; Raitt CE; Page AM
    Planta; 2001 Dec; 214(2):314-25. PubMed ID: 11800397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs.
    Skribanek A; Apatini D; Inaoka M; Böddi B
    J Photochem Photobiol B; 2000; 55(2-3):172-7. PubMed ID: 10942082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoconversion of long-wavelength protochlorophyll native form Pchl 682/672 into chlorophyll Chl 715/696 in Chlorella vulgaris B-15.
    Ignatov NV; Litvin FF
    Photosynth Res; 1996 Dec; 50(3):271-83. PubMed ID: 24271965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves.
    Ignatov NV; Litvin FF
    Biochemistry (Mosc); 2002 Aug; 67(8):949-55. PubMed ID: 12223097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B; Bertrand M; Funk C
    Photochem Photobiol; 2000 Nov; 72(5):660-8. PubMed ID: 11107852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.