These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27734535)

  • 1. A Hexagonal Covalent Porphyrin Framework as an Efficient Support for Gold Nanoparticles toward Catalytic Reduction of 4-Nitrophenol.
    Ding ZD; Wang YX; Xi SF; Li Y; Li Z; Ren X; Gu ZG
    Chemistry; 2016 Nov; 22(47):17029-17036. PubMed ID: 27734535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Silica-Coated Gold Sponges with High Thermal and Catalytic Stability.
    Lee MJ; Kang SH; Dey J; Choi SM
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22562-22570. PubMed ID: 29806933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles.
    Niu L; Zhao X; Tang Z; Wu F; Lei Q; Wang J; Wang X; Liang W; Wang X
    Sci Total Environ; 2022 Aug; 835():155423. PubMed ID: 35469885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticles supported by imidazolium-based porous organic polymers for nitroarene reduction.
    Su Y; Li X; Wang Y; Zhong H; Wang R
    Dalton Trans; 2016 Nov; 45(42):16896-16903. PubMed ID: 27711874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 Jan; 7(3):1201-8. PubMed ID: 25486865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ intercalation of Au nanoparticles and magnetic γ-Fe
    Zhou S; Jin W; Ding Y; Shao B; Wang B; Hu X; Kong Y
    Dalton Trans; 2018 Dec; 47(47):16862-16875. PubMed ID: 30289145
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Dursun S; Yavuz E; Çetinkaya Z
    RSC Adv; 2019 Nov; 9(66):38538-38546. PubMed ID: 35540227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metalloporphyrin-based porous organic polymer as an efficient catalyst for the catalytic oxidation of olefins and arylalkanes.
    Ding ZD; Zhu W; Li T; Shen R; Li Y; Li Z; Ren X; Gu ZG
    Dalton Trans; 2017 Aug; 46(34):11372-11379. PubMed ID: 28812758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction.
    Pachfule P; Kandambeth S; Díaz Díaz D; Banerjee R
    Chem Commun (Camb); 2014 Mar; 50(24):3169-72. PubMed ID: 24519675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of stable and highly efficient Au@ZIF-8 for selective hydrogenation of nitrophenol.
    Zhang M; Long H; Liu Q; Sun L; Qi C
    Nanotechnology; 2020 Nov; 31(48):485707. PubMed ID: 32931473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe
    Jin C; Han J; Chu F; Wang X; Guo R
    Langmuir; 2017 May; 33(18):4520-4527. PubMed ID: 28412814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid biosynthesis and characterization of metallic gold nanoparticles by olea europea and their potential application in photoelectrocatalytic reduction of 4-nitrophenol.
    Syed SS; Jacob L; Bharath G; Haija MA; Kaushik A; Banat F
    Environ Res; 2023 Apr; 222():115280. PubMed ID: 36657593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and catalytic evaluation of Au/γ -Al
    Saira F; Firdous N; Qureshi R; Ihsan A
    Turk J Chem; 2020; 44(2):448-460. PubMed ID: 33488169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted Synthesis of Hexagonal Gold Nanoparticles Reduced by Organosilane (3-Mercaptopropyl)trimethoxysilane.
    Shah KW; Zheng L
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Catalytic Activity for 2, 3, and 4-Nitrophenol Reduction of Green Catalysts Based on Cu, Ag and Au Nanoparticles Deposited on Polydopamine-Magnetite Porous Supports.
    Brown HK; El Haskouri J; Marcos MD; Ros-Lis JV; Amorós P; Úbeda Picot MÁ; Pérez-Pla F
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles.
    Thawarkar SR; Thombare B; Munde BS; Khupse ND
    RSC Adv; 2018 Nov; 8(67):38384-38390. PubMed ID: 35559095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH
    Yuan M; Yang R; Wei S; Hu X; Xu D; Yang J; Dong Z
    J Colloid Interface Sci; 2019 Mar; 538():720-730. PubMed ID: 30471943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability.
    Konuspayeva Z; Afanasiev P; Nguyen TS; Di Felice L; Morfin F; Nguyen NT; Nelayah J; Ricolleau C; Li ZY; Yuan J; Berhault G; Piccolo L
    Phys Chem Chem Phys; 2015 Nov; 17(42):28112-20. PubMed ID: 25765742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dextrin-mediated synthesis of Ag NPs for colorimetric assays of Cu(2+) ion and Au NPs for catalytic activity.
    Bankura K; Rana D; Mollick MM; Pattanayak S; Bhowmick B; Saha NR; Roy I; Midya T; Barman G; Chattopadhyay D
    Int J Biol Macromol; 2015 Sep; 80():309-16. PubMed ID: 26143120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.