These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 277347)
41. Structure of subnucleosomal particles. Tetrameric (H3/H4)2 146 base pair DNA and hexameric (H3/H4)2(H2A/H2B)1 146 base pair DNA complexes. Read CM; Baldwin JP; Crane-Robinson C Biochemistry; 1985 Jul; 24(16):4435-50. PubMed ID: 4052408 [TBL] [Abstract][Full Text] [Related]
42. Heparin increases chromatin accessibility by binding the trypsin-sensitive basic residues in histones. Villeponteau B Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):953-8. PubMed ID: 1281984 [TBL] [Abstract][Full Text] [Related]
43. Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A. Burlingame RW; Love WE; Wang BC; Hamlin R; Nguyen HX; Moudrianakis EN Science; 1985 May; 228(4699):546-53. PubMed ID: 3983639 [TBL] [Abstract][Full Text] [Related]
44. Chromatin structure of the developmentally regulated early histone genes of the sea urchin Strongylocentrotus purpuratus. Fronk J; Tank GA; Langmore JP Nucleic Acids Res; 1990 Sep; 18(17):5255-63. PubMed ID: 2402446 [TBL] [Abstract][Full Text] [Related]
45. Nuclease sensitivity and functional analysis of a maize histone H3 gene promoter. Brignon P; Lepetit M; Gigot C; Chaubet N Plant Mol Biol; 1993 Sep; 22(6):1007-15. PubMed ID: 8400121 [TBL] [Abstract][Full Text] [Related]
46. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Hansen JC; Wolffe AP Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2339-43. PubMed ID: 8134397 [TBL] [Abstract][Full Text] [Related]
47. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Weintraub H; Palter K; Van Lente F Cell; 1975 Sep; 6(1):85-110. PubMed ID: 1164735 [TBL] [Abstract][Full Text] [Related]
48. Distribution of H1 histone in chromatin digested by micrococcal nuclease. Gaubatz JW; Chalkley R Nucleic Acids Res; 1977 Oct; 4(10):3281-301. PubMed ID: 928061 [TBL] [Abstract][Full Text] [Related]
49. Histone-dependent reconstitution and nucleosomal localization of a nonhistone chromosomal protein: the H2A-specific protease. Watson DK; Moudrianakis EN Biochemistry; 1982 Jan; 21(2):248-56. PubMed ID: 7041960 [TBL] [Abstract][Full Text] [Related]
50. Effects of thyroid hormone administration on the susceptibility of rat liver chromatin to digestion with micrococcal nuclease. Nikodem VM; Rall JE Biochem Biophys Res Commun; 1982 Jun; 106(4):1148-54. PubMed ID: 7115394 [No Abstract] [Full Text] [Related]
51. Contributions of linker histones and histone H3 to chromatin structure: scanning force microscopy studies on trypsinized fibers. Leuba SH; Bustamante C; Zlatanova J; van Holde K Biophys J; 1998 Jun; 74(6):2823-9. PubMed ID: 9635736 [TBL] [Abstract][Full Text] [Related]
52. The structure of the chromatin core particle in solution. Pardon JF; Worcester DL; Wooley JC; Cotter RI; Lilley DM; Richards RM Nucleic Acids Res; 1977 Sep; 4(9):3199-214. PubMed ID: 561952 [TBL] [Abstract][Full Text] [Related]
53. The role of histone H1 and non-structured domains of core histones in maintaining the orientation of nucleosomes within the chromatin fiber. Makarov VL; Dimitrov SI; Tsaneva IR; Pashev IG Biochem Biophys Res Commun; 1984 Aug; 122(3):1021-7. PubMed ID: 6477546 [TBL] [Abstract][Full Text] [Related]
54. Accessibility and structural role of histone domains in chromatin. biophysical and immunochemical studies of progressive digestion with immobilized proteases. Hacques MF; Muller S; De Murcia G; Van Regenmortel MH; Marion C J Biomol Struct Dyn; 1990 Dec; 8(3):619-41. PubMed ID: 2100522 [TBL] [Abstract][Full Text] [Related]
55. The sites of deposition of newly synthesized histone. Jackson V; Marshall S; Chalkley R Nucleic Acids Res; 1981 Sep; 9(18):4563-81. PubMed ID: 7301583 [TBL] [Abstract][Full Text] [Related]
56. Parental nucleosomes segregated to newly replicated chromatin are underacetylated relative to those assembled de novo. Perry CA; Allis CD; Annunziato AT Biochemistry; 1993 Dec; 32(49):13615-23. PubMed ID: 8257695 [TBL] [Abstract][Full Text] [Related]
57. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Ruiz-Carrillo A; Puigdomènech P; Eder G; Lurz R Biochemistry; 1980 Jun; 19(12):2544-54. PubMed ID: 6772200 [TBL] [Abstract][Full Text] [Related]
58. Nucleosomes associated with newly replicated DNA have an altered conformation. Seale RL Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2717-21. PubMed ID: 275840 [TBL] [Abstract][Full Text] [Related]
59. Regulation of the higher-order structure of chromatin by histones H1 and H5. Allan J; Cowling GJ; Harborne N; Cattini P; Craigie R; Gould H J Cell Biol; 1981 Aug; 90(2):279-88. PubMed ID: 7287811 [TBL] [Abstract][Full Text] [Related]
60. Specificity of the histone lysine methyltransferases from rat brain chromatin. Duerre JA; Onisk DV Biochim Biophys Acta; 1985 Nov; 843(1-2):58-67. PubMed ID: 3933570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]